Stable nitride precipitation in additively manufactured nickel superalloys

J. S. Zuback, A. D. Iams, F. Zhang, L. A. Giannuzzi, T. A. Palmer

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

With negligible quantities of nitrogen, wrought and welded solid solution strengthened nickel superalloys usually contain carbides and topologically close-packed phases, such as Laves phase. However, appreciable nitrogen levels on the order of 0.1 % mass fraction drove the precipitation of a range of unanticipated nitride phases in additively manufactured Inconel 625 in the as-deposited and post process hot isostatically pressed conditions. Different nitride phases were observed with small changes in alloy chemistry. Cubic metal nitrides (MN), tetragonal Z-phase (CrNbN), and diamond-cubic metal η-nitrides (M6N) were found within the γ matrix of Inconel 625 containing relatively low Fe (1 %), low Ti (0.02 %), and high Si (0.39 %) mass fractions. Conversely, these phases were replaced by only MN nitrides in a similar Inconel 625 alloy with elevated mass fractions of Ti (0.21 %) and Fe (4 %). These various phases, however, were not fully predicted using state-of-the-art computational thermodynamic tools and databases, indicating a sparsity of data for nickel superalloys. Even after hot isostatic pressing, many nitrides persisted and only experienced slight changes in composition and lattice parameters in both materials. The stability of these nitride phases presents a potential pathway for achieving enhanced high temperature and creep properties within this and similar alloy systems.

Original languageEnglish (US)
Article number164918
JournalJournal of Alloys and Compounds
Volume910
DOIs
StatePublished - Jul 25 2022

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Stable nitride precipitation in additively manufactured nickel superalloys'. Together they form a unique fingerprint.

Cite this