Stable Symmetry-Protected Topological Phases in Systems with Heralded Noise

Sanket Chirame, Fiona J. Burnell, Sarang Gopalakrishnan, Abhinav Prem

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We present a family of local quantum channels whose steady states exhibit stable mixed-state symmetry-protected topological (SPT) order. Motivated by recent experimental progress on "erasure conversion"techniques that allow one to identify (herald) decoherence processes, we consider open systems with biased erasure noise, which leads to strongly symmetric heralded errors. We utilize this heralding to construct a local correction protocol that effectively confines errors into short-ranged pairs in the steady state. Using a combination of numerical simulations and mean-field analysis, we show that our protocol stabilizes SPT order against a sufficiently low rate of decoherence. As the rate of heralded noise increases, SPT order is eventually lost through a directed percolation transition. We further find that while introducing unheralded errors destroys SPT order in the limit of long length scales and timescales, the correction protocol is sufficient for ensuring that local SPT order persists, with a correlation length that diverges as ζ∼(1-fe)-1/2, where fe is the fraction of errors that are heralded.

Original languageEnglish (US)
Article number010403
JournalPhysical review letters
Volume134
Issue number1
DOIs
StatePublished - Jan 10 2025

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Stable Symmetry-Protected Topological Phases in Systems with Heralded Noise'. Together they form a unique fingerprint.

Cite this