Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters

Hiroshi Kanno, Noel C. Giebink, Yiru Sun, Stephen R. Forrest

Research output: Contribution to journalArticlepeer-review

163 Scopus citations


We demonstrate a white stacked organic light-emitting device (WSOLED) employing the blue fluorescent emitter, 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl, and the green and red phosphorescent emitters, fac-tris(2-phenylpyridinato-N, C 2′) iridium (III) and iridium (III) bis(2-phenyl quinolyl-N, C 2′) acetylacetonate, respectively. The charge generation region consists of a Li-doped electron transport layer and a highly transparent MoO x thin film. For a two-element white SOLED (2-WSOLED), the combination of red and green phosphors with a blue fluorophore yields maximum external quantum and power efficiencies of η ext=23% ±2% at a current density of J=1 mA/cm 2 and η p=14±1 lm/W at J=0.17 mA/cm 2, respectively. Due to the low optical and electrical losses of the charge generation layer, the efficiencies scale approximately linearly with the number of independent emissive elements in the WSOLED. Hence, for a 3-WSOLED, the total external and power efficiencies estimated for operation of the device in a light fixture are η ext,tot =57% ±6% and η p,tot=22±2 lm/W, respectively, at a luminance of 1000 cd/m 2, with Commission Internationale de L'Eclairage chromaticity coordinates of (x=0.38, y=0.44), and a color rendering index of 82. The high-efficiency, high brightness, stacked white PLED is potentially useful for solid state lighting applications.

Original languageEnglish (US)
Article number023503
JournalApplied Physics Letters
Issue number2
StatePublished - 2006

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters'. Together they form a unique fingerprint.

Cite this