TY - JOUR
T1 - STAMP
T2 - A web tool for exploring DNA-binding motif similarities
AU - Mahony, Shaun
AU - Benos, Panayiotis V.
N1 - Funding Information:
This work was supported by NIH grants RR014214 and NO1 AI-50018 and NSF grant MCB0316255. P.V.B. was also supported by NIH grant 1R01LM007994-01 and TATRC/DoD USAMRAA Prime Award W81XWH-05-2-0066. Funding to pay the Open Access publication charges for this article was provided by NSF (grant no.: MCB0316255).
PY - 2007/7
Y1 - 2007/7
N2 - STAMP is a newly developed web server that is designed to support the study of DNA-binding motifs. STAMP may be used to query motifs against databases of known motifs; the software aligns input motifs against the chosen database (or alternatively against a user-provided dataset), and lists of the highest-scoring matches are returned. Such similarity-search functionality is expected to facilitate the identification of transcription factors that potentially interact with newly discovered motifs. STAMP also automatically builds multiple alignments, familial binding profiles and similarity trees when more than one motif is inputted. These functions are expected to enable evolutionary studies on sets of related motifs and fixed-order regulatory modules, as well as illustrating similarities and redundancies within the input motif collection. STAMP is a highly flexible alignment platform, allowing users to 'mix-and-match' between various implemented comparison metrics, alignment methods (local or global, gapped or ungapped), multiple alignment strategies and tree-building methods. Motifs may be inputted as frequency matrices (in many of the commonly used formats), consensus sequences, or alignments of known binding sites. STAMP also directly accepts the output files from 12 supported motif-finders, enabling quick interpretation of motif-discovery analyses. STAMP is available at http://www.benoslab.pitt.edu/stamp.
AB - STAMP is a newly developed web server that is designed to support the study of DNA-binding motifs. STAMP may be used to query motifs against databases of known motifs; the software aligns input motifs against the chosen database (or alternatively against a user-provided dataset), and lists of the highest-scoring matches are returned. Such similarity-search functionality is expected to facilitate the identification of transcription factors that potentially interact with newly discovered motifs. STAMP also automatically builds multiple alignments, familial binding profiles and similarity trees when more than one motif is inputted. These functions are expected to enable evolutionary studies on sets of related motifs and fixed-order regulatory modules, as well as illustrating similarities and redundancies within the input motif collection. STAMP is a highly flexible alignment platform, allowing users to 'mix-and-match' between various implemented comparison metrics, alignment methods (local or global, gapped or ungapped), multiple alignment strategies and tree-building methods. Motifs may be inputted as frequency matrices (in many of the commonly used formats), consensus sequences, or alignments of known binding sites. STAMP also directly accepts the output files from 12 supported motif-finders, enabling quick interpretation of motif-discovery analyses. STAMP is available at http://www.benoslab.pitt.edu/stamp.
UR - http://www.scopus.com/inward/record.url?scp=34547569191&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547569191&partnerID=8YFLogxK
U2 - 10.1093/nar/gkm272
DO - 10.1093/nar/gkm272
M3 - Article
C2 - 17478497
AN - SCOPUS:34547569191
SN - 0305-1048
VL - 35
SP - W253-W258
JO - Nucleic acids research
JF - Nucleic acids research
IS - SUPPL.2
ER -