Standardized ASCE Penman-Monteith: Impact of sum-of-hourly vs. 24-hour timestep computations at reference weather station sites

S. Irmak, T. A. Howell, R. G. Allen, J. O. Payero, D. L. Martin

Research output: Contribution to journalArticlepeer-review

68 Scopus citations


The standardized ASCE Penman-Monteith (ASCE-PM) model was used to estimate grass-reference evapotranspiration (ETo) over a range of climates at seven locations based on hourly and 24 h weather data. Hourly ETo computations were summed over 24 h periods and reported as sum-of-hourly (SOH). The SOH ASCE-PM ETo values (ETo,h,ASCE) were compared with the 24 h timestep ASCE-PM ETo values (ETo,d) and SOH ETo values using the FAO Paper 56 Penman-Monteith (FAO56-PM) method (ETo,h,FAO). The ETo,h,ASCE values were used as the basis for comparison. The ETo,d estimated higher than ETo,h,ASCE at all locations except one, and agreement between the computational timesteps was best in humid regions. The greatest differences between ETo,d and ETo,h,ASCE were in locations where strong, dry, hot winds cause advective increases in ETo. Three locations showed considerable signs of advection. Some of the differences between the timesteps was attributed to uncertainties in predicting soil heat flux and to the difficulty of ET o,d to effectively account for abrupt diurnal changes in wind speed, air temperature, and vapor pressure deficit. The ETo,h,FAO values correlated well with ETo,h,ASCE values (r2 ≥ 0.997), but estimated lower than ETo,h,ASCE at all locations by 5% to 8%. This was due to the impact of higher surface resistance during daytime periods. Summing the ETo values over a weekly, monthly, or annual basis generally reduced the differences between ETo,d and ET o,h,ASCE. Summing the ETo,d values over multiple days and longer periods for peak ETo months resulted in inconsistent differences between the two timesteps. The results suggest a potential improvement in accuracy when using the standardized ASCE-PM procedure applied hourly rather than daily. The hourly application helps to account for abrupt changes in atmospheric conditions on ETo estimation in advective and other environments when hourly climate data are available.

Original languageEnglish (US)
Pages (from-to)1063-1077
Number of pages15
JournalTransactions of the American Society of Agricultural Engineers
Issue number3
StatePublished - May 2005

All Science Journal Classification (ASJC) codes

  • Agricultural and Biological Sciences (miscellaneous)


Dive into the research topics of 'Standardized ASCE Penman-Monteith: Impact of sum-of-hourly vs. 24-hour timestep computations at reference weather station sites'. Together they form a unique fingerprint.

Cite this