TY - GEN
T1 - State-dependent delay influenced drill string dynamics and stability analysis
AU - Liu, Xianbo
AU - Vlajic, Nicholas
AU - Long, Xinhua
AU - Meng, Guang
AU - Balachandran, Balakumar
PY - 2013
Y1 - 2013
N2 - In this paper, the authors present a discrete system model to study the coupled axial-torsional dynamics of a drill string. In this model, nonlinearities such as dry friction, loss of contact, and state-dependent time delay are taken into consideration. Simulations are carried out by using a 32-segment model with 128 states. Bit bounce is observed through time histories of axial vibrations, while stick-slip phenomenon is noted in the torsion response. The normal strain contours of this spatialtemporal system demonstrate the existence of strain wave propagation along the drill string. The shear strain wave shows the wave node and wave loop along the drill string, which indicates that the torsion motion has the properties of a standing wave. By varying the penetration rate, qualitative changes are observed in the system response, which includes chaotic and hyperchaotic behavior. Stability analysis shows a stable region for the degenerated one-segment model, while the stable region becomes infinitesimally small, as the resolution of spatial discretization is increased. This finding suggests the drill string motions are always likely to be self-exited in practical drilling operations.
AB - In this paper, the authors present a discrete system model to study the coupled axial-torsional dynamics of a drill string. In this model, nonlinearities such as dry friction, loss of contact, and state-dependent time delay are taken into consideration. Simulations are carried out by using a 32-segment model with 128 states. Bit bounce is observed through time histories of axial vibrations, while stick-slip phenomenon is noted in the torsion response. The normal strain contours of this spatialtemporal system demonstrate the existence of strain wave propagation along the drill string. The shear strain wave shows the wave node and wave loop along the drill string, which indicates that the torsion motion has the properties of a standing wave. By varying the penetration rate, qualitative changes are observed in the system response, which includes chaotic and hyperchaotic behavior. Stability analysis shows a stable region for the degenerated one-segment model, while the stable region becomes infinitesimally small, as the resolution of spatial discretization is increased. This finding suggests the drill string motions are always likely to be self-exited in practical drilling operations.
UR - http://www.scopus.com/inward/record.url?scp=84896901599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896901599&partnerID=8YFLogxK
U2 - 10.1115/DETC2013-12904
DO - 10.1115/DETC2013-12904
M3 - Conference contribution
AN - SCOPUS:84896901599
SN - 9780791855973
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PB - American Society of Mechanical Engineers
T2 - ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Y2 - 4 August 2013 through 7 August 2013
ER -