Abstract
This technical brief makes use of the concept of symbolic time-series analysis (STSA) for identifying discrete states from the nonlinear time response of a chaotic dynamical system for model-free reinforcement learning (RL) control. Along this line, a projection-based method is adopted to construct probabilistic finite state automata (PFSA) for identification of the current state (i.e., operational regime) of the Lorenz system; and a simple Q-map-based (and model-free) RL control strategy is formulated to reach the target state from the (identified) current state. A synergistic combination of PFSA-based state identification and RL control is demonstrated by the simulation of a numeric model of the Lorenz system, which yields very satisfactory performance to reach the target states from the current states in real-time.
Original language | English (US) |
---|---|
Article number | 054501 |
Journal | Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME |
Volume | 146 |
Issue number | 5 |
DOIs | |
State | Published - Sep 1 2024 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Information Systems
- Instrumentation
- Mechanical Engineering
- Computer Science Applications