TY - GEN
T1 - Statistical comparision of feature sets for time series classification of dynamical system response
AU - Banerjee, Amit
AU - Quiroz, Juan C.
AU - Abu-Mahfouz, Issam
N1 - Publisher Copyright:
Copyright © 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - The use of classification techniques for machine health monitoring and fault diagnosis has been popular in recent years. System response in form of time series data can be used to identify type of defect, severity of defect etc. However, a central issue with time series classification is that of identifying appropriate features for classification. In this paper, we explore a new feature set based on a delay differential equations (DDEs). DDEs have been used recently for extracting features for classification but have never been used to classify system responses. The Duffing oscillator and Van der Pol-Duffing (VDP-D) oscillator are used as dynamic systems, and the responses are classified into self-similar groups. Responses with the same period should belong to the same group. Misclassification rate is used as an indicator of the efficacy of the feature set. The proposed feature set is compared to a statistical feature set, a power spectral coefficient feature set and a wavelet coefficient feature set. In work described in this paper, a density estimation algorithm called DBSCAN is used as the classification algorithm. The proposed DDE-based feature set is found to be significantly better than the other feature sets for the classifying responses generated by the Duffing system. The wavelet and the power spectral coefficient data sets are not found to be significantly better than the statistical feature set for the Duffing system. None of the feature sets tested are discerning enough on the VDP-D system.
AB - The use of classification techniques for machine health monitoring and fault diagnosis has been popular in recent years. System response in form of time series data can be used to identify type of defect, severity of defect etc. However, a central issue with time series classification is that of identifying appropriate features for classification. In this paper, we explore a new feature set based on a delay differential equations (DDEs). DDEs have been used recently for extracting features for classification but have never been used to classify system responses. The Duffing oscillator and Van der Pol-Duffing (VDP-D) oscillator are used as dynamic systems, and the responses are classified into self-similar groups. Responses with the same period should belong to the same group. Misclassification rate is used as an indicator of the efficacy of the feature set. The proposed feature set is compared to a statistical feature set, a power spectral coefficient feature set and a wavelet coefficient feature set. In work described in this paper, a density estimation algorithm called DBSCAN is used as the classification algorithm. The proposed DDE-based feature set is found to be significantly better than the other feature sets for the classifying responses generated by the Duffing system. The wavelet and the power spectral coefficient data sets are not found to be significantly better than the statistical feature set for the Duffing system. None of the feature sets tested are discerning enough on the VDP-D system.
UR - http://www.scopus.com/inward/record.url?scp=84982957477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982957477&partnerID=8YFLogxK
U2 - 10.1115/IMECE201551455
DO - 10.1115/IMECE201551455
M3 - Conference contribution
AN - SCOPUS:84982957477
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Dynamics, Vibration, and Control
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015
Y2 - 13 November 2015 through 19 November 2015
ER -