TY - JOUR
T1 - Statistical metamodeling of dynamic network loading
AU - Song, Wenjing
AU - Han, Ke
AU - Wang, Yiou
AU - Friesz, Terry L.
AU - del Castillo, Enrique
N1 - Publisher Copyright:
© 2017
PY - 2018/11
Y1 - 2018/11
N2 - Dynamic traffic assignment models rely on a network performance module known as dynamic network loading (DNL), which expresses flow propagation, flow conservation, and travel delay at a network level. The DNL defines the so-called network delay operator, which maps a set of path departure rates to a set of path travel times (or costs). It is widely known that the delay operator is not available in closed form, and has undesirable properties that severely complicate DTA analysis and computation, such as discontinuity, non-differentiability, non-monotonicity, and computational inefficiency. This paper proposes a fresh take on this important and difficult issue, by providing a class of surrogate DNL models based on a statistical learning method known as Kriging. We present a metamodeling framework that systematically approximates DNL models and is flexible in the sense of allowing the modeler to make trade-offs among model granularity, complexity, and accuracy. It is shown that such surrogate DNL models yield highly accurate approximations (with errors below 8%) and superior computational efficiency (9 to 455 times faster than conventional DNL procedures such as those based on the link transmission model). Moreover, these approximate DNL models admit closed-form and analytical delay operators, which are Lipschitz continuous and infinitely differentiable, with closed-form Jacobians. We provide in-depth discussions on the implications of these properties to DTA research and model applications.
AB - Dynamic traffic assignment models rely on a network performance module known as dynamic network loading (DNL), which expresses flow propagation, flow conservation, and travel delay at a network level. The DNL defines the so-called network delay operator, which maps a set of path departure rates to a set of path travel times (or costs). It is widely known that the delay operator is not available in closed form, and has undesirable properties that severely complicate DTA analysis and computation, such as discontinuity, non-differentiability, non-monotonicity, and computational inefficiency. This paper proposes a fresh take on this important and difficult issue, by providing a class of surrogate DNL models based on a statistical learning method known as Kriging. We present a metamodeling framework that systematically approximates DNL models and is flexible in the sense of allowing the modeler to make trade-offs among model granularity, complexity, and accuracy. It is shown that such surrogate DNL models yield highly accurate approximations (with errors below 8%) and superior computational efficiency (9 to 455 times faster than conventional DNL procedures such as those based on the link transmission model). Moreover, these approximate DNL models admit closed-form and analytical delay operators, which are Lipschitz continuous and infinitely differentiable, with closed-form Jacobians. We provide in-depth discussions on the implications of these properties to DTA research and model applications.
UR - http://www.scopus.com/inward/record.url?scp=85028308680&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028308680&partnerID=8YFLogxK
U2 - 10.1016/j.trb.2017.08.018
DO - 10.1016/j.trb.2017.08.018
M3 - Article
AN - SCOPUS:85028308680
SN - 0191-2615
VL - 117
SP - 740
EP - 756
JO - Transportation Research Part B: Methodological
JF - Transportation Research Part B: Methodological
ER -