Steady-State Spectroscopic Analysis of Proton-Dependent Electron Transfer on Pyrazine-Appended Metal Dithiolenes [Ni(pdt)2], [Pd(pdt)2], and [Pt(pdt)2] (pdt = 2,3-Pyrazinedithiol)

Steven R. Kennedy, Morgan N. Kozar, Hemant P. Yennawar, Benjamin J. Lear

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

We report the structural, electronic, and acid/base properties of a series of ML2 metal dithiolene complexes, where M = Ni, Pd, Pt and L = 2,3-pyrazinedithiol. These complexes are non-innocent and possess strong electronic coupling between ligands across the metal center. The electronic coupling can be readily quantified in the monoanionic mixed valence state using Marcus-Hush theory. Analysis of the intervalence charge transfer (IVCT) band reveals that that electronic coupling in the mixed valence state is 5800, 4500, and 5700 cm-1 for the Ni, Pd, and Pt complexes, respectively. We then focus on their response to acid titration in the mixed valence state, which generates the asymmetrically protonated mixed valence mixed protonated state. For all three complexes, protonation results in severe attenuation of the electronic coupling, as measured by the IVCT band. We find nearly 5-fold decreases in electronic coupling for both Ni and Pt, while, for the Pd complex, the electronic coupling is reduced to the point that the IVCT band is no longer observable. We ascribe the reduction in electronic coupling to charge pinning induced by asymmetric protonation. The more severe reduction in coupling for the Pd complex is a result of greater energetic mismatch between ligand and metal orbitals, reflected in the smaller electronic coupling for the pure mixed valence state. This work demonstrates that the bridging metal center can be used to tune the electronic coupling in both the mixed valence and mixed valence mixed protonated states, as well as the magnitude of change of the electronic coupling that accompanies changes in protonation state.

Original languageEnglish (US)
Pages (from-to)8459-8467
Number of pages9
JournalInorganic chemistry
Volume55
Issue number17
DOIs
StatePublished - Sep 6 2016

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Steady-State Spectroscopic Analysis of Proton-Dependent Electron Transfer on Pyrazine-Appended Metal Dithiolenes [Ni(pdt)2], [Pd(pdt)2], and [Pt(pdt)2] (pdt = 2,3-Pyrazinedithiol)'. Together they form a unique fingerprint.

Cite this