Steep slope devices: Enabling new architectural paradigms

Karthik Swaminathan, Huichu Liu, Xueqing Li, Moon Seok Kim, Jack Sampson, Vijaykrishnan Narayanan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

The existence of domains where traditional CMOS processors are inefficient has been well-documented in the current literature. In particular, the inefficiency of general purpose CMOS designs operating at very low supply voltages is well-known, and steep sub-threshold slope technologies, such as Tunneling Field Effect Transistors (TFETs), have been demonstrated as a viable alternative for the low-voltage operation domain. However, restricting the design space of steep slope technology-based processors to near-threshold or sub-threshold general purpose processors does the technology a disservice. Steep slope (SS) architectures can simultaneously expand the frontiers of viable computers at both ends of the energy scale: On the one hand, SS architectures enable ultra-low power sensor nodes and wearable technology, while on the other, they are applicable to high powered servers and high performance computing engines. We demonstrate the benefits of adapting this technology in such non-conventional domains, while attempting to address the major challenges encountered. We explore the effect of noise and variations at various levels of abstraction, ranging from the device to the architecture, and examine various techniques to overcome them.

Original languageEnglish (US)
Title of host publicationDAC 2014 - 51st Design Automation Conference, Conference Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781479930173
DOIs
StatePublished - 2014
Event51st Annual Design Automation Conference, DAC 2014 - San Francisco, CA, United States
Duration: Jun 2 2014Jun 5 2014

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Other

Other51st Annual Design Automation Conference, DAC 2014
Country/TerritoryUnited States
CitySan Francisco, CA
Period6/2/146/5/14

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Steep slope devices: Enabling new architectural paradigms'. Together they form a unique fingerprint.

Cite this