Stellar Gravitational Lens Engineering for Interstellar Communication and Artifact SETI

Stephen Kerby, Jason T. Wright

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Several recent works have proposed a "stellar relay"transmission system in which a spacecraft at the focus of a star's gravitational lens achieves dramatic boosts in the gain of an outgoing or incoming interstellar transmission. We examine some of the engineering requirements of a stellar relay system, evaluate the long-term sustainability of a gravitational relay, and describe the perturbations and drifts that must be actively countered to maintain a relay-star-target alignment. The major perturbations on a relay-Sun-target alignment are the inwards gravity of the Sun and the reflex motion of the Sun imparted by the planets. These ∼m s-1 yr-1 accelerations can be countered with modern propulsion systems over century-long timescales. This examination is also relevant for telescope designs aiming to use the Sun as a focusing element. We additionally examine prospects for an artifact SETI search to observe stellar relays placed around the Sun by an extraterrestrial intelligence and suggest certain nearby stars that are relatively unperturbed by planetary systems as favorable nodes for a stellar relay communications system.

Original languageEnglish (US)
Article number252
JournalAstronomical Journal
Volume162
Issue number6
DOIs
StatePublished - Dec 1 2021

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Stellar Gravitational Lens Engineering for Interstellar Communication and Artifact SETI'. Together they form a unique fingerprint.

Cite this