Step towards Energy-Water Smart Microgrids; Buildings Thermal Energy and Water Demand Management Embedded in Economic Dispatch

Faegheh Moazeni, Javad Khazaei, Arash Asrari

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Energy, building, and water networks are three interlinked critical infrastructures that need to be operated cooperatively to maximize the smart grid's economic benefits. In this paper, a mixed-integer linear programming (MILP) formulation is proposed to approach the economic dispatch (ED) problem for smart grids embedded with interdependent water and energy networks. Energy management of various building applications is considered by intelligently controlling the indoor temperature during occupied and unoccupied hours. To optimize the demand of water distribution system, pump's nonlinear scheduling and hydraulic factors and daily water usage of buildings are added to the proposed model. Piecewise linear approximation of univariate and bivariate nonlinear functions is used to convert the nonlinear problem to an MILP formulation. Several case studies were conducted to examine the impact of indoor temperature settings of the buildings, speed of pumps, battery efficiency, and end of day (EoD) battery and tank constraints on economic dispatch of the microgrid system.

Original languageEnglish (US)
Article number9383103
Pages (from-to)3680-3691
Number of pages12
JournalIEEE Transactions on Smart Grid
Volume12
Issue number5
DOIs
StatePublished - Sep 2021

All Science Journal Classification (ASJC) codes

  • General Computer Science

Fingerprint

Dive into the research topics of 'Step towards Energy-Water Smart Microgrids; Buildings Thermal Energy and Water Demand Management Embedded in Economic Dispatch'. Together they form a unique fingerprint.

Cite this