TY - JOUR
T1 - Stereoisomerically enhanced polynorbornene-imide dielectric energy storage performance
AU - Qin, Hongmei
AU - Liu, Man
AU - Qin, Shiyu
AU - Zhang, Shixian
AU - Zhou, Xingnan
AU - Li, Chenjian
AU - Wei, Yuhao
AU - Chen, Dan
AU - Fan, Rong
AU - Wang, Shan
AU - Yang, Quanling
AU - Xiong, Chuanxi
AU - Wang, Qing
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Developing dielectric polymers with different stereoisomers may provide a novel strategy to improve electrostatic energy storage performance under harsh environments. However, there is still little research about the effect of polymer stereoisomerism on capacitive energy storage so far. Here, we report a new class of cycloaliphatic polynorbornene-imide (PNC) dielectric with two different spatial configurations and demonstrate that flexural configuration significantly improves the energy storage performance at room temperature and high temperature. ENDO-PNC with flexural configuration possesses slightly higher dielectric constant, comparably large bandgap and dramatically improved thermal properties with respect to EXO-PNC with near-planar configuration. Notedly, ENDO-PNC exhibits dramatically inhibited leakage current density and hopping distance, substantially improved activation energy, electrical resistivity and breakdown strength. Consequently, ENDO-PNC exhibits an ultrahigh discharged energy density (Ud) of 11.10 J/cm3, 9.11 J/cm3 and 6.77 J/cm3 at 25 °C, 150 °C and 200 °C respectively, as high as 1.4 times, 2.0 times and 2.8 times that of EXO-PNC. Moreover, ENDO-PNC delivers a maximum Ud of 6.0 J/cm3 and 3.3 J/cm3 above 90 % efficiency respectively at 150 °C and 200 °C, superior to neat polymers and highly competitive in reported polymer composites. The stereoisomerism effect on dielectric energy storage is further demonstrated in other dielectric polymers, revealing this strategy is universally applicable and particularly meaningful to design and exploit polymer dielectrics working under harsh environments.
AB - Developing dielectric polymers with different stereoisomers may provide a novel strategy to improve electrostatic energy storage performance under harsh environments. However, there is still little research about the effect of polymer stereoisomerism on capacitive energy storage so far. Here, we report a new class of cycloaliphatic polynorbornene-imide (PNC) dielectric with two different spatial configurations and demonstrate that flexural configuration significantly improves the energy storage performance at room temperature and high temperature. ENDO-PNC with flexural configuration possesses slightly higher dielectric constant, comparably large bandgap and dramatically improved thermal properties with respect to EXO-PNC with near-planar configuration. Notedly, ENDO-PNC exhibits dramatically inhibited leakage current density and hopping distance, substantially improved activation energy, electrical resistivity and breakdown strength. Consequently, ENDO-PNC exhibits an ultrahigh discharged energy density (Ud) of 11.10 J/cm3, 9.11 J/cm3 and 6.77 J/cm3 at 25 °C, 150 °C and 200 °C respectively, as high as 1.4 times, 2.0 times and 2.8 times that of EXO-PNC. Moreover, ENDO-PNC delivers a maximum Ud of 6.0 J/cm3 and 3.3 J/cm3 above 90 % efficiency respectively at 150 °C and 200 °C, superior to neat polymers and highly competitive in reported polymer composites. The stereoisomerism effect on dielectric energy storage is further demonstrated in other dielectric polymers, revealing this strategy is universally applicable and particularly meaningful to design and exploit polymer dielectrics working under harsh environments.
UR - http://www.scopus.com/inward/record.url?scp=85184061457&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85184061457&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.149244
DO - 10.1016/j.cej.2024.149244
M3 - Article
AN - SCOPUS:85184061457
SN - 1385-8947
VL - 483
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 149244
ER -