TY - JOUR
T1 - Stimulation of parabrachial nuclei dilates airways in cats
AU - Motekaitis, A. M.
AU - Solomon, I. C.
AU - Kaufman, M. P.
PY - 1994
Y1 - 1994
N2 - Stimulation of the parabrachial nuclei has been shown to increase mean arterial pressure as well as to terminate inspiration. Nevertheless, the effect on airway caliber evoked by stimulation of the parabrachial nuclei is not known. Therefore, in chloralose-anesthetized cats, we microinjected DL- homocysteic acid (25 nl; 100 mM) into 44 sites in or near the lateral and medial parabrachial nuclei while calculating breath-by-breath total lung resistance and dynamic compliance. We found that, in 43 of these sites, microinjection of this excitatory amino acid consistently decreased total lung resistance but had no effect on dynamic compliance. The decrease in lung resistance was caused by a withdrawal of cholinergic tone to the airways. We could find no evidence that the decrease in total lung resistance evoked by stimulation of the parabrachial nuclei was caused by activation of either β- adrenergic or nonadrenergic noncholinergic pathways. The decrease in total lung resistance evoked by stimulation of the parabrachial nuclei was not secondary to the baroreceptor reflex even though microinjection frequently increased mean arterial pressure. In addition, microinjection did not have consistent effects on phrenic nerve activity, although in individual circumstances the effect on this activity was quite large. We conclude that stimulation of cell bodies and dendrites in the parabrachial nuclei dilates the airways of anesthetized cats and that the effect is not secondary to the baroreceptor reflex.
AB - Stimulation of the parabrachial nuclei has been shown to increase mean arterial pressure as well as to terminate inspiration. Nevertheless, the effect on airway caliber evoked by stimulation of the parabrachial nuclei is not known. Therefore, in chloralose-anesthetized cats, we microinjected DL- homocysteic acid (25 nl; 100 mM) into 44 sites in or near the lateral and medial parabrachial nuclei while calculating breath-by-breath total lung resistance and dynamic compliance. We found that, in 43 of these sites, microinjection of this excitatory amino acid consistently decreased total lung resistance but had no effect on dynamic compliance. The decrease in lung resistance was caused by a withdrawal of cholinergic tone to the airways. We could find no evidence that the decrease in total lung resistance evoked by stimulation of the parabrachial nuclei was caused by activation of either β- adrenergic or nonadrenergic noncholinergic pathways. The decrease in total lung resistance evoked by stimulation of the parabrachial nuclei was not secondary to the baroreceptor reflex even though microinjection frequently increased mean arterial pressure. In addition, microinjection did not have consistent effects on phrenic nerve activity, although in individual circumstances the effect on this activity was quite large. We conclude that stimulation of cell bodies and dendrites in the parabrachial nuclei dilates the airways of anesthetized cats and that the effect is not secondary to the baroreceptor reflex.
UR - http://www.scopus.com/inward/record.url?scp=0028266061&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028266061&partnerID=8YFLogxK
U2 - 10.1152/jappl.1994.76.4.1712
DO - 10.1152/jappl.1994.76.4.1712
M3 - Article
C2 - 8045851
AN - SCOPUS:0028266061
SN - 8750-7587
VL - 76
SP - 1712
EP - 1718
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 4
ER -