Stochastic Population Models

John Fricks, Ephraim Hanks

Research output: Chapter in Book/Report/Conference proceedingChapter


In this chapter, we introduce stochastic population processes, and more specifically Markov population processes. We give basic definitions and examples from the scientific literature to illustrate the process of building these stochastic models. We then discuss approximations to these stochastic processes when the population is large and review numerical schemes for stochastic simulation that rely on these approximations. We then review and suggest practical statistical inference methods for observations that arise from these stochastic population models, including when these models are generalized to a spatio-temporal framework.

Original languageEnglish (US)
Title of host publicationHandbook of Statistics
EditorsArni S.R. Srinivasa Rao, C.R. Rao
PublisherElsevier B.V.
Number of pages38
ISBN (Print)9780444640727
StatePublished - 2018

Publication series

NameHandbook of Statistics
ISSN (Print)0169-7161

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'Stochastic Population Models'. Together they form a unique fingerprint.

Cite this