TY - JOUR
T1 - Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR
AU - Zheng, Xiaofeng
AU - Bevilacqua, Philip C.
PY - 2000/12/19
Y1 - 2000/12/19
N2 - The human interferon-induced protein kinase, PKR, is an antiviral agent that is activated by long stretches of double-stranded (ds)RNA. PKR has an N-terminal dsRNA-binding domain that contains two tandem copies of the dsRNA-binding motif and interacts with dsRNA in a nonsequence-specific fashion. Surprisingly, PKR can be regulated by certain viral and cellular RNAs containing non-Watson-Crick features. We found that RNAs containing bulges in the middle of a helix can bind to p20, a C-terminal truncated PKR containing the dsRNA-binding domain. Bulges are known to change the global geometry of RNA by bending the helical axis; therefore, we investigated the conformational changes of bulged RNA caused by PKR binding. A 66-mer DNA-RNA(+/- A3 bulge)-DNA chimera was constructed and annealed to a complementary RNA strand. This duplex forces the protein to bind in the middle. A 66-mer duplex with a top strand composed of DNA-DNA(+/-A3 bulge)-RNA was used as a control. Gel mobility-shift changes among the RNA-protein complexes are consistent with straightening of bulged RNA on protein binding. In addition, a van't Hoff analysis of p20 binding to bulged RNA reveals a favorable ΔΔH° and an unfavorable ΔΔS° relative to binding to straight dsRNA. These thermodynamic parameters are in good agreement with predictions from a nearest-neighbor analysis for RNA straightening and support a model in which the helical junction flanking the bulge stacks on protein binding. The ability of dsRNA-binding motif proteins to recognize and straighten bent RNA has implications for modulating the topology of RNAs in vivo.
AB - The human interferon-induced protein kinase, PKR, is an antiviral agent that is activated by long stretches of double-stranded (ds)RNA. PKR has an N-terminal dsRNA-binding domain that contains two tandem copies of the dsRNA-binding motif and interacts with dsRNA in a nonsequence-specific fashion. Surprisingly, PKR can be regulated by certain viral and cellular RNAs containing non-Watson-Crick features. We found that RNAs containing bulges in the middle of a helix can bind to p20, a C-terminal truncated PKR containing the dsRNA-binding domain. Bulges are known to change the global geometry of RNA by bending the helical axis; therefore, we investigated the conformational changes of bulged RNA caused by PKR binding. A 66-mer DNA-RNA(+/- A3 bulge)-DNA chimera was constructed and annealed to a complementary RNA strand. This duplex forces the protein to bind in the middle. A 66-mer duplex with a top strand composed of DNA-DNA(+/-A3 bulge)-RNA was used as a control. Gel mobility-shift changes among the RNA-protein complexes are consistent with straightening of bulged RNA on protein binding. In addition, a van't Hoff analysis of p20 binding to bulged RNA reveals a favorable ΔΔH° and an unfavorable ΔΔS° relative to binding to straight dsRNA. These thermodynamic parameters are in good agreement with predictions from a nearest-neighbor analysis for RNA straightening and support a model in which the helical junction flanking the bulge stacks on protein binding. The ability of dsRNA-binding motif proteins to recognize and straighten bent RNA has implications for modulating the topology of RNAs in vivo.
UR - http://www.scopus.com/inward/record.url?scp=0034687782&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034687782&partnerID=8YFLogxK
U2 - 10.1073/pnas.011355798
DO - 10.1073/pnas.011355798
M3 - Article
C2 - 11114159
AN - SCOPUS:0034687782
SN - 0027-8424
VL - 97
SP - 14162
EP - 14167
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 26
ER -