Abstract
Ferroelectric thin films have potential applications in many devices such as memories, microwaves, transduction sensors, actuators, photovoltaics, etc. The mesoscale domain structures and thus properties of ferroelectric thin films depend crucially on the amount of strain imposed upon by the underlying substrates. Phase-field method has been extensively applied to understanding the underlying physics of the experimentally observed domain structures and predicting their responses to external electrical, mechanical, thermal, and chemical stimuli. In this chapter, the fundamentals of the thin-film phase-field method and its applications in predicting the effects of strains on the phase transitions, domain structures, and the domain switching are reviewed. The prospect of using phase-field method in microstructure design and property optimization for ferroelectric thin films is discussed.
Original language | English (US) |
---|---|
Title of host publication | Handbook of Materials Modeling |
Subtitle of host publication | Applications: Current and Emerging Materials, Second Edition |
Publisher | Springer International Publishing |
Pages | 1213-1230 |
Number of pages | 18 |
ISBN (Electronic) | 9783319446806 |
ISBN (Print) | 9783319446790 |
DOIs | |
State | Published - Jan 1 2020 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy
- General Engineering
- General Chemistry