Strain - Coupled fluidlastic circuits inside metal additive manufactured structures

Ankit Saxena, George Rai, Valentin Lanari, Christopher D. Rahn, Guhaprasanna Manogharan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Fluidlastic dampers, isolators and absorbers are stand alone components used to reduce vibrations in many civil, mechanical and aerospace structures. This research demonstrates how additive manufacturing can integrate fluidlastic circuits inside a metal part. An example device with relatively simple monolithic construction consists of two chambers separated by a thin membrane that is connected to the upper chamber by a bridge compliant mechanism. The chambers are filled with fluid and are connected by a long thin channel inertia track that coils around their periphery. Elastic strain deflects the bridge causing the membrane to bulge into the upper chamber. This causes a pressure gradient that drives the fluid flow from the upper chamber to the lower chamber through the inertia track. Enabled by additive manufacturing, design parameters such as chamber dimensions, constitutive material, fluid viscosity, etc. can be easily tailored to provide targeted resonance over a desired frequency range. Experimental results provide evidence of fluid pumping at the membrane’s first resonant frequency.

Original languageEnglish (US)
Title of host publicationDynamics, Vibration, and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791885611
DOIs
StatePublished - 2021
EventASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021 - Virtual, Online
Duration: Nov 1 2021Nov 5 2021

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume7A-2021

Conference

ConferenceASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021
CityVirtual, Online
Period11/1/2111/5/21

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Strain - Coupled fluidlastic circuits inside metal additive manufactured structures'. Together they form a unique fingerprint.

Cite this