TY - JOUR
T1 - Strain phase equilibria and phase-field method of ferroelectric polydomain
T2 - A case study of monoclinic KxNa1 −xNbO3 thin films
AU - Wang, Bo
AU - Zhou, Meng Jun
AU - Ladera, Adriana
AU - Chen, Long Qing
N1 - Publisher Copyright:
© 2024 The Author(s). Journal of the American Ceramic Society published by Wiley Periodicals LLC on behalf of American Ceramic Society.
PY - 2024/12
Y1 - 2024/12
N2 - Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to establishing their structure–property relationships that underpin their applications from piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase separation and polydomain formation and analytically predict the corresponding domain volume fractions and wall orientations of, relatively low symmetry and theoretically more challenging, monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase equilibria theory, microelasticity, and phase-field method. Using monoclinic KxNa1 −xNbO3(0.5 < x < 1.0) thin films as a model system, we establish the polydomain strain–strain phase diagrams, from which we identify two types of monoclinic polydomain structures. The analytically predicted strain conditions of formation, domain volume fractions, and domain wall orientations for the two polydomain structures are consistent with phase-field simulations and in good agreement with experimental results in the literature. The present study demonstrates a general, powerful analytical theoretical framework to predict the strain phase equilibria and domain wall orientations of polydomain structures applicable to both high- and low-symmetry ferroelectrics and provide fundamental insights into the equilibrium domain structures of ferroelectric KxNa1 −xNbO3 thin films that are of technology relevance for lead-free dielectric and piezoelectric applications.
AB - Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to establishing their structure–property relationships that underpin their applications from piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase separation and polydomain formation and analytically predict the corresponding domain volume fractions and wall orientations of, relatively low symmetry and theoretically more challenging, monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase equilibria theory, microelasticity, and phase-field method. Using monoclinic KxNa1 −xNbO3(0.5 < x < 1.0) thin films as a model system, we establish the polydomain strain–strain phase diagrams, from which we identify two types of monoclinic polydomain structures. The analytically predicted strain conditions of formation, domain volume fractions, and domain wall orientations for the two polydomain structures are consistent with phase-field simulations and in good agreement with experimental results in the literature. The present study demonstrates a general, powerful analytical theoretical framework to predict the strain phase equilibria and domain wall orientations of polydomain structures applicable to both high- and low-symmetry ferroelectrics and provide fundamental insights into the equilibrium domain structures of ferroelectric KxNa1 −xNbO3 thin films that are of technology relevance for lead-free dielectric and piezoelectric applications.
UR - https://www.scopus.com/pages/publications/85201585212
UR - https://www.scopus.com/inward/citedby.url?scp=85201585212&partnerID=8YFLogxK
U2 - 10.1111/jace.20072
DO - 10.1111/jace.20072
M3 - Article
AN - SCOPUS:85201585212
SN - 0002-7820
VL - 107
SP - 7692
EP - 7710
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 12
ER -