Strain phase equilibria and phase-field method of ferroelectric polydomain: A case study of monoclinic KxNa1 −xNbO3 thin films

Bo Wang, Meng Jun Zhou, Adriana Ladera, Long Qing Chen

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to establishing their structure–property relationships that underpin their applications from piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase separation and polydomain formation and analytically predict the corresponding domain volume fractions and wall orientations of, relatively low symmetry and theoretically more challenging, monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase equilibria theory, microelasticity, and phase-field method. Using monoclinic KxNa1 −xNbO3(0.5 < x < 1.0) thin films as a model system, we establish the polydomain strain–strain phase diagrams, from which we identify two types of monoclinic polydomain structures. The analytically predicted strain conditions of formation, domain volume fractions, and domain wall orientations for the two polydomain structures are consistent with phase-field simulations and in good agreement with experimental results in the literature. The present study demonstrates a general, powerful analytical theoretical framework to predict the strain phase equilibria and domain wall orientations of polydomain structures applicable to both high- and low-symmetry ferroelectrics and provide fundamental insights into the equilibrium domain structures of ferroelectric KxNa1 −xNbO3 thin films that are of technology relevance for lead-free dielectric and piezoelectric applications.

Original languageEnglish (US)
Pages (from-to)7692-7710
Number of pages19
JournalJournal of the American Ceramic Society
Volume107
Issue number12
DOIs
StatePublished - Dec 2024

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Strain phase equilibria and phase-field method of ferroelectric polydomain: A case study of monoclinic KxNa1 −xNbO3 thin films'. Together they form a unique fingerprint.

Cite this