Strain-Specific Gifsy-1 Prophage Genes Are Determinants for Expression of the RNA Repair Operon during the SOS Response in Salmonella enterica Serovar Typhimurium

Jennifer E. Kurasz, Madison C. Crawford, Steffen Porwollik, Oliver Gregory, Katerina R. Tadlock, Eve C. Balding, Emily E. Weinert, Michael McClelland, Anna C. Karls

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (s54). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in S. Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon rsr-yrlBA-rtcBA. The molecular signal for RtcR activation is an oligoribonucleotide with a 39-terminal 29,39-cyclic phosphate. We show in S. Typhimurium 14028s that the molecular signal is not a direct product of nucleic acid damage, but signal generation is dependent on a RecA-controlled SOS-response pathway, specifically, induction of prophage Gifsy-1. A genome-wide mutant screen and utilization of Gifsy prophage-cured strains indicated that the nucleoid-associated protein Fis and the Gifsy-1 prophage significantly impact RtcR activation. Directed-deletion analysis and genetic mapping by transduction demonstrated that a three-gene region (STM14_3218-3220) in Gifsy-1, which is variable between S. Typhimurium strains, is required for RtcR activation in strain 14028s and that the absence of STM14_3218-3220 in the Gifsy-1 prophages of S. Typhimurium strains LT2 and 4/74, which renders these strains unable to activate RtcR during genotoxic stress, can be rescued by complementation in cis by the region encompassing STM14_3218-3220. Thus, even though RtcR and the RNA repair operon are highly conserved in Salmonella enterica serovars, RtcR-dependent expression of the RNA repair operon in S. Typhimurium is controlled by a variable region of a prophage present in only some strains. IMPORTANCE The transcriptional activator RtcR and the RNA repair proteins whose expression it regulates, RtcA and RtcB, are widely conserved in Proteobacteria. In Salmonella Typhimurium 14028s, genotoxic stress activates RtcR to direct RpoN-dependent expression of the rsr-yrlBA-rtcBA operon. This work identifies key elements of a RecA-dependent pathway that generates the signal for RtcR activation in strain 14028s. This signaling pathway requires the presence of a specific region within the prophage Gifsy-1, yet this region is absent in most other wild-type Salmonella strains. Thus, we show that the activity of a widely conserved regulatory protein can be controlled by prophages with narrow phylogenetic distributions. This work highlights an underappreciated phenomenon where bacterial physiological functions are altered due to genetic rearrangement of prophages.

Original languageEnglish (US)
JournalJournal of bacteriology
Volume205
Issue number1
DOIs
StatePublished - Jan 2023

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Strain-Specific Gifsy-1 Prophage Genes Are Determinants for Expression of the RNA Repair Operon during the SOS Response in Salmonella enterica Serovar Typhimurium'. Together they form a unique fingerprint.

Cite this