Abstract
Staphylococcus aureus is a versatile human pathogen that produces diverse virulence factors, and its biofilm cells are difficult to eradicate due to their inherent ability to tolerate antibiotics. The anti-biofilm activities of the spent media of 252 diverse endophytic microorganisms were investigated using three S. aureus strains. An attempt was made to identify anti-biofilm compounds in active spent media and to assess their anti-hemolytic activities and hydrophobicities in order to investigate action mechanisms. Unlike other antibiotics, actinomycin D (0.5 μg ml−1) from Streptomyces parvulus significantly inhibited biofilm formation by all three S. aureus strains. Actinomycin D inhibited slime production in S. aureus and it inhibited hemolysis by S. aureus and caused S. aureus cells to become less hydrophobic, thus supporting its anti-biofilm effect. In addition, surface coatings containing actinomycin D prevented S. aureus biofilm formation on glass surfaces. Given these results, FDA-approved actinomycin D warrants further attention as a potential antivirulence agent against S. aureus infections.
Original language | English (US) |
---|---|
Pages (from-to) | 45-56 |
Number of pages | 12 |
Journal | Biofouling |
Volume | 32 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2 2016 |
All Science Journal Classification (ASJC) codes
- Aquatic Science
- Applied Microbiology and Biotechnology
- Water Science and Technology