TY - JOUR
T1 - Stress perturbation caused by multistage hydraulic fracturing
T2 - Implications for deep fault reactivation
AU - An, Mengke
AU - Zhang, Fengshou
AU - Dontsov, Egor
AU - Elsworth, Derek
AU - Zhu, Hehua
AU - Zhao, Luanxiao
N1 - Funding Information:
This work is supported by the National Key Research and Development Project (No. 2020YFC1808102 ) and the National Natural Science Foundation of China (No. 41772286 , 41941018 , 42077247 ). We thank Lingyuan Meng for providing the earthquake data of 2017 in Changning area and the data can be found at. 5
Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/5
Y1 - 2021/5
N2 - Swarms of earthquakes during shale gas exploitation in the Changning area of Sichuan Basin indicate that hydraulic fracturing induces seismicity both within the target reservoir but also to depths of several kilometers below the horizontal well. These remote earthquakes are possibly triggered by total stress perturbations resulting from the hydraulic fracturing. We use a dislocation-based analytical model to simulate multistage hydraulic fracturing of three horizontal wells at a single well pad to explore the spatiotemporal evolution of total stress perturbations. Results show that the number and distribution of fracturing stages affect both the distribution and magnitude of stress changes and that the stress change diminishes with distance. The undrained injection-induced stress change is below 10-3 MPa at distances ≥1 km for first-stage fracturing but reach 10-1 MPa for multistage fracturing of 30 stages in three wells. Undrained stress changes scale linearly with the magnitude of fluid leakoff into the formation – halving the effective fracture width halves the induced stress magnitudes and with an identical distribution – limiting the potential for fault reactivation. Scaling analysis for pressure diffusion distal from the reservoir indicate that the short-term impact is indeed essentially undrained. Estimates for long-term depletion identify a similar induced stress signal of opposite sign but with similar Coulomb potential for reactivation in the long-term. Such magnitudes of Coulomb stress changes suggest the possibility of fault reactivation on critically-stressed faults at kilometer separation from the injection both in the short-term due to stimulation and in the long-term resulting from depletion.
AB - Swarms of earthquakes during shale gas exploitation in the Changning area of Sichuan Basin indicate that hydraulic fracturing induces seismicity both within the target reservoir but also to depths of several kilometers below the horizontal well. These remote earthquakes are possibly triggered by total stress perturbations resulting from the hydraulic fracturing. We use a dislocation-based analytical model to simulate multistage hydraulic fracturing of three horizontal wells at a single well pad to explore the spatiotemporal evolution of total stress perturbations. Results show that the number and distribution of fracturing stages affect both the distribution and magnitude of stress changes and that the stress change diminishes with distance. The undrained injection-induced stress change is below 10-3 MPa at distances ≥1 km for first-stage fracturing but reach 10-1 MPa for multistage fracturing of 30 stages in three wells. Undrained stress changes scale linearly with the magnitude of fluid leakoff into the formation – halving the effective fracture width halves the induced stress magnitudes and with an identical distribution – limiting the potential for fault reactivation. Scaling analysis for pressure diffusion distal from the reservoir indicate that the short-term impact is indeed essentially undrained. Estimates for long-term depletion identify a similar induced stress signal of opposite sign but with similar Coulomb potential for reactivation in the long-term. Such magnitudes of Coulomb stress changes suggest the possibility of fault reactivation on critically-stressed faults at kilometer separation from the injection both in the short-term due to stimulation and in the long-term resulting from depletion.
UR - http://www.scopus.com/inward/record.url?scp=85103079102&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103079102&partnerID=8YFLogxK
U2 - 10.1016/j.ijrmms.2021.104704
DO - 10.1016/j.ijrmms.2021.104704
M3 - Article
AN - SCOPUS:85103079102
SN - 1365-1609
VL - 141
JO - International Journal of Rock Mechanics and Mining Sciences
JF - International Journal of Rock Mechanics and Mining Sciences
M1 - 104704
ER -