TY - JOUR
T1 - String topology for loop stacks
AU - Behrend, Kai
AU - Ginot, Grégory
AU - Noohi, Behrang
AU - Xu, Ping
N1 - Funding Information:
E-mail addresses: [email protected] (K. Behrend), [email protected] (G. Ginot), [email protected] (B. Noohi), [email protected] (P. Xu). 1 Research partially supported by NSF grants DMS-0306665 and DMS-0605725 & NSA grant H98230-06-1-0047.
PY - 2007/2/15
Y1 - 2007/2/15
N2 - We prove that the homology groups of the free loop stack of an oriented stack are equipped with a canonical loop product and coproduct, which makes it into a Frobenius algebra. Moreover, the shifted homology H• (L X) = H• + d (L X) admits a BV algebra structure. To cite this article: K. Behrend et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
AB - We prove that the homology groups of the free loop stack of an oriented stack are equipped with a canonical loop product and coproduct, which makes it into a Frobenius algebra. Moreover, the shifted homology H• (L X) = H• + d (L X) admits a BV algebra structure. To cite this article: K. Behrend et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
UR - http://www.scopus.com/inward/record.url?scp=33846814975&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846814975&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2006.10.006
DO - 10.1016/j.crma.2006.10.006
M3 - Article
AN - SCOPUS:33846814975
SN - 1631-073X
VL - 344
SP - 247
EP - 252
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 4
ER -