Abstract
We study strong existence and pathwise uniqueness for stochastic differential equations in Rd with rough coefficients, and without assuming uniform ellipticity for the diffusion matrix. Our approach relies on direct quantitative estimates on solutions to the SDE, assuming Sobolev bounds on the drift and diffusion coefficients, and Lp bounds for the solution of the corresponding Fokker-Planck PDE, which can be proved separately. This allows a great flexibility regarding the method employed to obtain these last bounds. Hence we are able to obtain general criteria in various cases, including the uniformly elliptic case in any dimension, the one-dimensional case and the Langevin (kinetic) case.
Original language | English (US) |
---|---|
Pages (from-to) | 1498-1541 |
Number of pages | 44 |
Journal | Annals of Probability |
Volume | 46 |
Issue number | 3 |
DOIs | |
State | Published - May 1 2018 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Statistics, Probability and Uncertainty