TY - JOUR
T1 - Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila
AU - Gorrell, Andrea
AU - Lawrence, Sarah H.
AU - Ferry, James G.
PY - 2005/3/18
Y1 - 2005/3/18
N2 - Acetate kinase catalyzes transfer of the γ-phosphate of ATP to acetate. The only crystal structure reported for acetate kinase is the homodimeric enzyme from Methanosarcina thermophila containing ADP and sulfate in the active site (Buss, K. A., Cooper, D. C., Ingram-Smith, C., Ferry, J. G., Sanders, D. A., and Hasson, M. S. (2001) J. Bacteriol. 193, 680-686). Here we report two new crystal structure of the M. thermophila enzyme in the presence of substrate and transition state analogs. The enzyme co-crystallized with the ATP analog adenosine 5′-[γ-thio]triphosphate contained AMP adjacent to thiopyrophosphate in the active site cleft of monomer B. The enzyme co-crystallized with ADP, acetate, Al3+, and F- contained a linear array of ADP-AlF3-acetate in the active site cleft of monomer B. Together, the structures clarify the substrate binding sites and support a direct in-line transfer mechanism in which AlF3 mimics the meta-phosphate transition state. Monomers A of both structures contained ADP and sulfate, and the active site clefts were closed less than in monomers B, suggesting that domain movement contributes to catalysis. The finding that His180 was in close proximity to AlF3 is consistent with a role for stabilization of the meta-phosphate that is in agreement with a previous report indicating that this residue is essential for catalysis. Residue Arg241 was also found adjacent to AlF3, consistent with a role for stabilization of the transition state. Kinetic analyses of Arg 241 and Arg91 replacement variants indicated that these residues are essential for catalysis and also indicated a role in binding acetate.
AB - Acetate kinase catalyzes transfer of the γ-phosphate of ATP to acetate. The only crystal structure reported for acetate kinase is the homodimeric enzyme from Methanosarcina thermophila containing ADP and sulfate in the active site (Buss, K. A., Cooper, D. C., Ingram-Smith, C., Ferry, J. G., Sanders, D. A., and Hasson, M. S. (2001) J. Bacteriol. 193, 680-686). Here we report two new crystal structure of the M. thermophila enzyme in the presence of substrate and transition state analogs. The enzyme co-crystallized with the ATP analog adenosine 5′-[γ-thio]triphosphate contained AMP adjacent to thiopyrophosphate in the active site cleft of monomer B. The enzyme co-crystallized with ADP, acetate, Al3+, and F- contained a linear array of ADP-AlF3-acetate in the active site cleft of monomer B. Together, the structures clarify the substrate binding sites and support a direct in-line transfer mechanism in which AlF3 mimics the meta-phosphate transition state. Monomers A of both structures contained ADP and sulfate, and the active site clefts were closed less than in monomers B, suggesting that domain movement contributes to catalysis. The finding that His180 was in close proximity to AlF3 is consistent with a role for stabilization of the meta-phosphate that is in agreement with a previous report indicating that this residue is essential for catalysis. Residue Arg241 was also found adjacent to AlF3, consistent with a role for stabilization of the transition state. Kinetic analyses of Arg 241 and Arg91 replacement variants indicated that these residues are essential for catalysis and also indicated a role in binding acetate.
UR - http://www.scopus.com/inward/record.url?scp=15444365167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=15444365167&partnerID=8YFLogxK
U2 - 10.1074/jbc.M412118200
DO - 10.1074/jbc.M412118200
M3 - Article
C2 - 15647264
AN - SCOPUS:15444365167
SN - 0021-9258
VL - 280
SP - 10731
EP - 10742
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 11
ER -