STRUCTURAL PRIOR MODELS FOR 3-D DEEP VESSEL SEGMENTATION

Xuelu Li, Raja Bala, Vishal Monga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We address the problem of 3-D blood vessel segmentation with a deep learning method that incorporates domain information via priors and regularizers on vessel structure and morphology. Inspired by the observation that 3-D vessel structures project onto 2-D image slices with distinctive edges that can aid 3-D vessel segmentation, we propose a novel multi-task learning architecture comprising a shared encoder and two decoders that respectively predict vessel segmentation maps and edge profiles. 3-D features from the two branches are concatenated to facilitate edge-guidance when learning segmentation maps. We introduce new regularization terms that encourage local homogeneity of 3-D blood vessel volumes brought about by biomarkers, as well as sparsity of edge pixels. Experiments on benchmark datasets demonstrate superior performance of our method over the state-of-the-art, especially when training data is limited.

Original languageEnglish (US)
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1231-1235
Number of pages5
ISBN (Electronic)9781665405409
DOIs
StatePublished - 2022
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Hybrid, Singapore
Duration: May 23 2022May 27 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityHybrid
Period5/23/225/27/22

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'STRUCTURAL PRIOR MODELS FOR 3-D DEEP VESSEL SEGMENTATION'. Together they form a unique fingerprint.

Cite this