TY - JOUR
T1 - Structural requirements for charged lipid molecules to directly increase or suppress K+ channel activity in smooth muscle cells
AU - Petrou, Steven
AU - Ordway, Richard W.
AU - Hamilton, James A.
AU - Walsh, John V.
AU - Singer, Joshua J.
PY - 1994/3
Y1 - 1994/3
N2 - We determined the structural features necessary for fatty acids to exert their action on K+ channels of gastric smooth muscle cells. Examination of the effects of a variety of synthetic and naturally occurring lipid compounds on K+ channel activity in cell-attached and excised membrane patches revealed that negatively charged analogs of medium to long chain fatty acids (but not short chain analogs) as well as certain other negatively charged lipids activate the channels. In contrast, positively charged, medium to long chain analogs suppress activity, and neutral analogs are without effect. The key requirements for effective compounds seem to be a sufficiently hydrophobic domain and the presence of a charged group. Furthermore, those negatively charged compounds unable to "flip" across the bilayer are effective only when applied at the cytosolic surface of the membrane, suggesting that the site of fatty acid action is also located there. Finally, because some of the effective compounds, for example, the fatty acids themselves, lysophosphatidate, acyl Coenzyme A, and sphingosine, are naturally occurring substances and can be liberated by agonist-activated or metabolic enzymes, they may act as second messengers targeting ion channels.
AB - We determined the structural features necessary for fatty acids to exert their action on K+ channels of gastric smooth muscle cells. Examination of the effects of a variety of synthetic and naturally occurring lipid compounds on K+ channel activity in cell-attached and excised membrane patches revealed that negatively charged analogs of medium to long chain fatty acids (but not short chain analogs) as well as certain other negatively charged lipids activate the channels. In contrast, positively charged, medium to long chain analogs suppress activity, and neutral analogs are without effect. The key requirements for effective compounds seem to be a sufficiently hydrophobic domain and the presence of a charged group. Furthermore, those negatively charged compounds unable to "flip" across the bilayer are effective only when applied at the cytosolic surface of the membrane, suggesting that the site of fatty acid action is also located there. Finally, because some of the effective compounds, for example, the fatty acids themselves, lysophosphatidate, acyl Coenzyme A, and sphingosine, are naturally occurring substances and can be liberated by agonist-activated or metabolic enzymes, they may act as second messengers targeting ion channels.
UR - http://www.scopus.com/inward/record.url?scp=0028350477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028350477&partnerID=8YFLogxK
M3 - Article
C2 - 8195783
AN - SCOPUS:0028350477
SN - 0022-1295
VL - 103
SP - 471
EP - 486
JO - Journal of General Physiology
JF - Journal of General Physiology
IS - 3
ER -