TY - JOUR
T1 - Structural requirements for the inhibition of calcium mobilization and mast cell activation by the pyrazole derivative BTP2
AU - Law, Mankit
AU - Morales, J. Luis
AU - Mottram, Laurie F.
AU - Iyer, Archana
AU - Peterson, Blake R.
AU - August, Avery
N1 - Funding Information:
We thank members of the August lab and the CMIID for feedback and discussion. We also thank E. Kunze, N. Bem and S. Magargee in the Center for Quantitative Cell Analysis at Penn State. This work was supported in part by grants from the NIH ( AI51626 , AI065566 and AI073955 ) to AA, CA83831 to BRP, and by the College of Agricultural Sciences at Penn State (to AA).
PY - 2011/8
Y1 - 2011/8
N2 - Mast cells play a critical role in the development of the allergic response. Upon activation by allergens and IgE via the high affinity receptor for IgE (FcεRI), these cells release histamine and other functional mediators that initiate and propagate immediate hypersensitivity reactions. Mast cells also secrete cytokines that can regulate immune activity. These processes are controlled, in whole or part, by increases in intracellular Ca 2+ induced by the FcεRI. We show here that N-(4-(3,5-bis(trifluoromethyl)-1H- pyrazol-1-yl)phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2), a pyrazole derivative, inhibits activation-induced Ca 2+ influx in the rat basophil cell line RBL-2H3 and in bone marrow-derived mast cells (BMMCs), without affecting global tyrosine phosphorylation of cellular proteins or phosphorylation of the mitogen-activated protein kinases Erk1/2, JNK and p38. BTP2 also inhibits activation-induced degranulation and secretion of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-13, tumor necrosis factor (TNF)-α, and granulocyte macrophage-colony stimulating factor (GM-CSF) by BMMCs, which correlates with the inhibition of Nuclear Factor of Activated T cells (NFAT) translocation. In vivo, BTP2 inhibits antigen-induced histamine release. Structure-activity relationship analysis indicates that substitution at the C3 or C5 position of the pyrazole moiety on BTP2 (5-trifluoromethyl-3-methyl- pyrazole or 3-trifluoromethyl-5-methyl-pyrazole, respectively) affected its activity, with the trifluoromethyl group at the C3 position being critical to its activity. We conclude that BTP2 and related compounds may be potent modulators of mast cell responses and potentially useful for the treatment of symptoms of allergic inflammation.
AB - Mast cells play a critical role in the development of the allergic response. Upon activation by allergens and IgE via the high affinity receptor for IgE (FcεRI), these cells release histamine and other functional mediators that initiate and propagate immediate hypersensitivity reactions. Mast cells also secrete cytokines that can regulate immune activity. These processes are controlled, in whole or part, by increases in intracellular Ca 2+ induced by the FcεRI. We show here that N-(4-(3,5-bis(trifluoromethyl)-1H- pyrazol-1-yl)phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2), a pyrazole derivative, inhibits activation-induced Ca 2+ influx in the rat basophil cell line RBL-2H3 and in bone marrow-derived mast cells (BMMCs), without affecting global tyrosine phosphorylation of cellular proteins or phosphorylation of the mitogen-activated protein kinases Erk1/2, JNK and p38. BTP2 also inhibits activation-induced degranulation and secretion of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-13, tumor necrosis factor (TNF)-α, and granulocyte macrophage-colony stimulating factor (GM-CSF) by BMMCs, which correlates with the inhibition of Nuclear Factor of Activated T cells (NFAT) translocation. In vivo, BTP2 inhibits antigen-induced histamine release. Structure-activity relationship analysis indicates that substitution at the C3 or C5 position of the pyrazole moiety on BTP2 (5-trifluoromethyl-3-methyl- pyrazole or 3-trifluoromethyl-5-methyl-pyrazole, respectively) affected its activity, with the trifluoromethyl group at the C3 position being critical to its activity. We conclude that BTP2 and related compounds may be potent modulators of mast cell responses and potentially useful for the treatment of symptoms of allergic inflammation.
UR - http://www.scopus.com/inward/record.url?scp=79958761265&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79958761265&partnerID=8YFLogxK
U2 - 10.1016/j.biocel.2011.04.016
DO - 10.1016/j.biocel.2011.04.016
M3 - Article
C2 - 21558014
AN - SCOPUS:79958761265
SN - 1357-2725
VL - 43
SP - 1228
EP - 1239
JO - International Journal of Biochemistry and Cell Biology
JF - International Journal of Biochemistry and Cell Biology
IS - 8
ER -