Abstract
The gsa gene, which encodes glutamate 1-semialdehyde (GSA) aminotransferase (GSAT), an enzyme in the chlorophyll and heme biosynthetic pathway, has been cloned from Chlamydomonas reinhardtii by complementation of an Escherichia coli hemL mutant. The deduced C. reinhardtii GSAT amino acid sequence has a high degree of similarity to GSAT sequences from barley, tobacco, soybean and various prokaryotic sources. In vitro enzyme activity assays from E. coli transformed with the C. reinhardtii GSAT cDNA showed that higher levels of GSAT activity are associated with the expression of the cDNA insert. Analysis of changes in mRNA levels in light:dark synchronized C. reinhardtii cultures was done by northern blotting. The level of GSAT mRNA nearly doubled during the first 0.5 h in the light and increased over 26-fold after 2 h in the light. This increase is comparable to previously reported increases in GSAT activity in dark-grown cultures transferred to the light, and is the first report of induction by light of a gene encoding an ALA biosynthetic enzyme in plant or algal cells. The accumulation of GSAT mRNA follows the pattern of chlorophyll accumulation and the pattern of chlorophyll a/b-binding protein (cabII-1) mRNA accumulation in these cells, suggesting that the two genes may be regulated by light through a common mechanism. Additional evidence that the GSAT mRNA may be transcriptionally regulated by light is found in the genomic sequence of the gsa gene. Two areas that are similar to sequences involved in the light regulation of genes from other organisms are located upstream of the GSAT-encoding region, and a third was detected internal to the coding region.
Original language | English (US) |
---|---|
Pages (from-to) | 617-629 |
Number of pages | 13 |
Journal | Plant molecular biology |
Volume | 24 |
Issue number | 4 |
DOIs | |
State | Published - Feb 1994 |
All Science Journal Classification (ASJC) codes
- Agronomy and Crop Science
- Genetics
- Plant Science