TY - JOUR
T1 - Structure-function relationships of the viral RNA-dependent RNA polymerase
T2 - Fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket
AU - Korneeva, Victoria S.
AU - Cameron, Craig E.
PY - 2007/6/1
Y1 - 2007/6/1
N2 - Studies of the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV), 3Dpol, have shown that Asn-297 permits this enzyme to distinguish ribose from 2′-deoxyribose. All animal RNA viruses have Asn at the structurally homologous position of their polymerases, suggesting a conserved function for this residue. However, all prokaryotic RNA viruses have Glu at this position. In the presence of Mg2+, the apparent affinity of Glu-297 3Dpol for 2′-deoxyribonucleotides was decreased by 6-fold relative to wild type without a substantial difference in the fidelity of 2′-dNMP incorporation. The fidelity of ribonucleotide misincorporation for Glu-297 3Dpol was reduced by 14-fold relative to wild type. A 4- to 11-fold reduction in the rate of ribonucleotide incorporation was observed. Glu-297 PV was unable to grow in HeLa cells due to a replication defect equivalent to that observed for a mutant PV encoding an inactive polymerase. Evaluation of the protein-(VPg)-primed initiation reaction showed that only half of the Glu-297 3Dpol initiation complexes were capable of producing VPg-pUpU product and that the overall yield of uridylylated VPg products was reduced by 20-fold relative to wild-type enzyme, a circumstance attributable to a reduced affinity for UTP. These studies identify the first RdRp derivative with a mutator phenotype and provide a mechanistic basis for the elevated mutation frequency of RNA phage relative to animal RNA viruses observed in culture. Although protein-primed initiation and RNA-primed elongation complexes employ the same polymerase active site, the functional differences reported here imply significant structural differences between these complexes.
AB - Studies of the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV), 3Dpol, have shown that Asn-297 permits this enzyme to distinguish ribose from 2′-deoxyribose. All animal RNA viruses have Asn at the structurally homologous position of their polymerases, suggesting a conserved function for this residue. However, all prokaryotic RNA viruses have Glu at this position. In the presence of Mg2+, the apparent affinity of Glu-297 3Dpol for 2′-deoxyribonucleotides was decreased by 6-fold relative to wild type without a substantial difference in the fidelity of 2′-dNMP incorporation. The fidelity of ribonucleotide misincorporation for Glu-297 3Dpol was reduced by 14-fold relative to wild type. A 4- to 11-fold reduction in the rate of ribonucleotide incorporation was observed. Glu-297 PV was unable to grow in HeLa cells due to a replication defect equivalent to that observed for a mutant PV encoding an inactive polymerase. Evaluation of the protein-(VPg)-primed initiation reaction showed that only half of the Glu-297 3Dpol initiation complexes were capable of producing VPg-pUpU product and that the overall yield of uridylylated VPg products was reduced by 20-fold relative to wild-type enzyme, a circumstance attributable to a reduced affinity for UTP. These studies identify the first RdRp derivative with a mutator phenotype and provide a mechanistic basis for the elevated mutation frequency of RNA phage relative to animal RNA viruses observed in culture. Although protein-primed initiation and RNA-primed elongation complexes employ the same polymerase active site, the functional differences reported here imply significant structural differences between these complexes.
UR - http://www.scopus.com/inward/record.url?scp=34447517120&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447517120&partnerID=8YFLogxK
U2 - 10.1074/jbc.M610090200
DO - 10.1074/jbc.M610090200
M3 - Article
C2 - 17400557
AN - SCOPUS:34447517120
SN - 0021-9258
VL - 282
SP - 16135
EP - 16145
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 22
ER -