Structure-Selective Synthesis of Wurtzite and Zincblende ZnS, CdS, and CuInS 2 Using Nanoparticle Cation Exchange Reactions

Julie L. Fenton, Benjamin C. Steimle, Raymond E. Schaak

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

For polymorphic solid-state systems containing multiple distinct crystal structures of the same composition, identifying rational pathways to selectively target one particular structure is an important synthetic capability. Cation exchange reactions can transform a growing library of metal chalcogenide nanocrystals into different phases by replacing the cation sublattice, often while retaining morphology and crystal structure. However, only a few examples have been demonstrated where multiple distinct phases in a polymorphic system could be selectively accessed using nanocrystal cation exchange reactions. Here, we show that roxbyite (hexagonal) and digenite (cubic) Cu 2-x S nanoparticles transform upon cation exchange with Cd 2+ , Zn 2+ , and In 3+ to wurtzite (hexagonal) and zincblende (cubic) CdS, ZnS, and CuInS 2 , respectively. These products retain the anion and cation sublattice features programmed into the copper sulfide template, and each phase forms to the exclusion of other known crystal structures. These results significantly expand the scope of structure-selective cation exchange reactions in polymorphic systems.

Original languageEnglish (US)
Pages (from-to)672-678
Number of pages7
JournalInorganic chemistry
Volume58
Issue number1
DOIs
StatePublished - Jan 7 2019

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Structure-Selective Synthesis of Wurtzite and Zincblende ZnS, CdS, and CuInS 2 Using Nanoparticle Cation Exchange Reactions'. Together they form a unique fingerprint.

Cite this