Abstract
Sources of astrophysical neutrinos can potentially be discovered through the detection of neutrinos in coincidence with electromagnetic or gravitational waves. Real-time alerts generated by IceCube play an important role in this search, acting as triggers for follow-up observations with instruments sensitive to other wavelengths. Once a high-energy event is detected by the IceCube real-time program, a complex and time consuming direction reconstruction method is run in order to calculate an accurate localisation. To investigate the effect of systematic uncertainties on the uncertainty estimate of the location, we simulate a set of high-energy events with a wide range of directions for different ice model realisations, the dominant systematic error in our localization uncertainty. This makes use of a novel simulation tool, which allows the treatment of systematic uncertainties with multiple continuously varied nuisance parameters. These events will be reconstructed using various reconstruction methods. This study will enable us to include systematic uncertainties in a robust manner in the real-time direction and error estimates.
Original language | English (US) |
---|---|
Article number | 1045 |
Journal | Proceedings of Science |
Volume | 395 |
State | Published - Mar 18 2022 |
Event | 37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany Duration: Jul 12 2021 → Jul 23 2021 |
All Science Journal Classification (ASJC) codes
- General