STUDY of cavitation phenomenon for a micro pillar in a channel

A. Nayebzadeh, H. Tabkhi, Y. Wang, Y. Peles

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Flow visualization and measurements of hydrodynamic cavitation were carried out in a rectangular (22 mm long, 1.5 wide and, 225 μm high) for a 150 μm diameter micro pillar inside. Distilled water was used as working fluid and pressure difference between inlet and outlet tanks utilized as the driving force to produce cavitation. High-speed camera captured cavitation starting from inception to an elongated one. Stochastic nature of phenomenon resulted in significant delays in witnessing cavitation for all experimental runs which may be attributed the dominance of surface tension force at this scale. Almost constant incipient cavitation numbers were achieved and no tangible dependency between cavitation inception number and pressure difference across the channel was observed which agrees well with previous studies.

Original languageEnglish (US)
Title of host publicationProceedings of the 2nd Thermal and Fluid Engineering Summer Conference, TFESC 2017 and 4th International Workshop on Heat Transfer, IWHT 2017
PublisherBegell House Inc.
Pages2595-2598
Number of pages4
ISBN (Electronic)9781567004700
StatePublished - 2017
Event2nd Thermal and Fluid Engineering Summer Conference, TFESC 2017 and 4th International Workshop on Heat Transfer, IWHT 2017 - Las Vegas, United States
Duration: Apr 2 2017Apr 5 2017

Publication series

NameProceedings of the Thermal and Fluids Engineering Summer Conference
Volume2017-April
ISSN (Electronic)2379-1748

Conference

Conference2nd Thermal and Fluid Engineering Summer Conference, TFESC 2017 and 4th International Workshop on Heat Transfer, IWHT 2017
Country/TerritoryUnited States
CityLas Vegas
Period4/2/174/5/17

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Energy Engineering and Power Technology
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'STUDY of cavitation phenomenon for a micro pillar in a channel'. Together they form a unique fingerprint.

Cite this