TY - GEN
T1 - STUDYING CHANGES TO THE ADDITIVE MANUFACTURABILITY OF DESIGN SOLUTIONS WHEN PREPARED AND SIMULATED IN IMMERSIVE VIRTUAL REALITY
AU - Mathur, Jayant
AU - Miller, Scarlett Rae
AU - Simpson, Timothy William
AU - Meisel, Nicholas A.
N1 - Publisher Copyright:
Copyright © 2024 by ASME.
PY - 2024
Y1 - 2024
N2 - Solving problems with additive manufacturing (AM) often means fabricating geometrically complex designs, layer-by-layer, along one or multiple directions. Designers navigate this 3D spatial complexity to determine the best design and manufacturing solutions to produce functional parts, manufacturable by AM. However, to assess the manufacturability of their solutions, designers need modalities that naturally visualize AM processes and the designs enabled by them. Creating physical parts offers such visualization but becomes expensive and time-consuming over multiple design iterations. While non-immersive simulations can alleviate this cost of physical visualization, adding digital immersion further improves outcomes from the visualization experience. This research, therefore, studies how differences in immersion between computer-aided (CAx) and virtual reality (VR) environments affect: 1. determining the best solution for additively manufacturing a design and 2. the cognitive load experienced from completing the DfAM problem-solving experience. For the study, designers created a 3D manifold model and simulated manufacturing it in either CAx or VR. Analysis of the filtered data from the study shows that slicing and printing their designs in VR yields a significant change in the manufacturability outcomes of their design compared to CAx. No observable differences were found in the cognitive load experienced between the two modalities. This means that the experiences in VR may influence improvements to manufacturability outcomes without changes to the mental exertion experienced by the designers. This presents key implications for how designers are equipped to solve design problems with AM.
AB - Solving problems with additive manufacturing (AM) often means fabricating geometrically complex designs, layer-by-layer, along one or multiple directions. Designers navigate this 3D spatial complexity to determine the best design and manufacturing solutions to produce functional parts, manufacturable by AM. However, to assess the manufacturability of their solutions, designers need modalities that naturally visualize AM processes and the designs enabled by them. Creating physical parts offers such visualization but becomes expensive and time-consuming over multiple design iterations. While non-immersive simulations can alleviate this cost of physical visualization, adding digital immersion further improves outcomes from the visualization experience. This research, therefore, studies how differences in immersion between computer-aided (CAx) and virtual reality (VR) environments affect: 1. determining the best solution for additively manufacturing a design and 2. the cognitive load experienced from completing the DfAM problem-solving experience. For the study, designers created a 3D manifold model and simulated manufacturing it in either CAx or VR. Analysis of the filtered data from the study shows that slicing and printing their designs in VR yields a significant change in the manufacturability outcomes of their design compared to CAx. No observable differences were found in the cognitive load experienced between the two modalities. This means that the experiences in VR may influence improvements to manufacturability outcomes without changes to the mental exertion experienced by the designers. This presents key implications for how designers are equipped to solve design problems with AM.
UR - http://www.scopus.com/inward/record.url?scp=85210825220&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85210825220&partnerID=8YFLogxK
U2 - 10.1115/DETC2024-143204
DO - 10.1115/DETC2024-143204
M3 - Conference contribution
AN - SCOPUS:85210825220
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 50th Design Automation Conference (DAC)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2024
Y2 - 25 August 2024 through 28 August 2024
ER -