Sub-miniature five-hole probe calibration using a time efficient pitch and yaw mechanism and accuracy improvements

Jason Town, Cengiz Camci

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

A five-hole probe is a proven aerodynamic tool for the accurate measurement of flow fields, but is traditionally difficult to calibrate manually in an acceptable range of pitch and yaw angles. With advancements in computer technology, it is possible to improve the calibration process that is made up of tedious and repeating angular pitch and yaw angle movements. This paper proposes a way to increase the accuracy of measurements. The proposed approach uses computer automation, a mechanical pressure scanner, and precision rotary tables to significantly reduce the amount of time required to complete the calibration sequence. A five-hole probe is fastened to a precision calibration mechanism in a wind tunnel test section. This mechanism varied the pitch and yaw angle of the probe accurately via two computer controlled rotary tables. This approach allowed for a much greater degree of accuracy and a way to increase the number of data points taken, better defining the non-linear portions of the calibration maps. The scanivalve system minimized the number of transducers required from seven to one. While it takes more time than having multiple transducers, this approach lowered the overall equipment costs and helped to reduce measurement errors. The data acquisition device provides an interface between the rotary table stepper controllers, the scanivalve controller, and the transducer. A LabVIEW interface was then used to control all of the devices, while simultaneously retrieving data from the transducer and turning it into the coefficients needed to make the calibration map. The program allows for a degree of flexibility, allowing the user to choose the range of angles and the degrees between each point.

Original languageEnglish (US)
Title of host publicationASME 2011 Turbo Expo
Subtitle of host publicationTurbine Technical Conference and Exposition, GT2011
Pages349-359
Number of pages11
DOIs
StatePublished - 2011
EventASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011 - Vancouver, BC, Canada
Duration: Jun 6 2011Jun 10 2011

Publication series

NameProceedings of the ASME Turbo Expo
Volume3

Other

OtherASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011
Country/TerritoryCanada
CityVancouver, BC
Period6/6/116/10/11

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Sub-miniature five-hole probe calibration using a time efficient pitch and yaw mechanism and accuracy improvements'. Together they form a unique fingerprint.

Cite this