Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Surface topography modification with nano- or micro-textured structures has been an efficient approach to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection without modification of surface chemistry/bulk properties of materials and without causing antibiotic resistance. This manuscript focuses on submicron-textured patterns with ordered arrays of pillars on polyurethane (PU) biomaterial surfaces in an effort to understand the effects of surface pillar features and surface properties on adhesion and colonization responses of two staphylococcal strains. Five submicron patterns with a variety of pillar dimensions were designed and fabricated on PU film surfaces and bacterial adhesion and biofilm formation of Staphylococcal strains (Staphylococcus epidermidis RP62A and Staphylococcus aureus Newman D2C) were characterized. Results show that all submicron textured surface significantly reduced bacterial adhesion and inhibited biofilm formation, and bacterial adhesion linearly decreased with the reduction in top surface area fraction. Surface wettability did not show a linear correlation with bacterial adhesion, suggesting that surface contact area dominates bacterial adhesion. From this, it appears that the design of textured patterns should minimize surface area fraction to reduce the bacterial interaction with surfaces but in a way that ensures the mechanical strength of pillars in order to avoid collapse. These findings may provide a rationale for design of polymer surfaces for antifouling medical devices.

Original languageEnglish (US)
Pages (from-to)1238-1250
Number of pages13
JournalJournal of Biomedical Materials Research - Part A
Issue number6
StatePublished - Jun 2022

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys


Dive into the research topics of 'Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation'. Together they form a unique fingerprint.

Cite this