Substitution effects on the water oxidation of ruthenium catalysts: A quantum-chemical look

Abu Md Asaduzzaman, Derek Wasylenko, Curtis P. Berlinguette, Georg Schreckenbach

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Quantum chemistry has been used to investigate the oxidation of water by a family of seven catalysts based on [Ru(tpy)(bpy)(OH2)]2+ (tpy = 2,2′:6′,2′′-terpyridine, bpy = 2,2′-bipyridine). The electron-donating -OMe and -NH2 groups (EDG) and electron-withdrawing -COOH and -NO2 groups (EWG) are installed in the catalyst by replacing hydrogen atoms on the bpy and tpy ligands. The EDG induces an increase in the electron density at the Ru center, whereas the EWG does the opposite. Reduced electron density at the metal center facilitates Ru(N+1)/Ru(N) reduction and thus a higher reduction potential. Catalytic evolution of one oxygen molecule from two water molecules using all catalysts is an exothermic process if driven by CeIV. The exothermicity increases from EDG to EWG via parents. Regarding intermediates, the singlet states of 7-coordinated catalysts are slightly more stable than the triplet states of 6-coordinated catalysts for most catalysts. Only for a strong EWG (-NO2) containing catalyst, the triplet 6-coordinated states complex is the most stable. Calculated Ru-O and O-O distances suggest that oxygen will be liberated favorably from the triplet state of 6-coordinated complexes, whose stability increase (with respect to the singlet of 7-coordinated complexes) with increasing electron-withdrawing nature.

Original languageEnglish (US)
Pages (from-to)242-250
Number of pages9
JournalJournal of Physical Chemistry C
Volume119
Issue number1
DOIs
StatePublished - Jan 8 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Substitution effects on the water oxidation of ruthenium catalysts: A quantum-chemical look'. Together they form a unique fingerprint.

Cite this