TY - GEN
T1 - Subsurface microstructure and crystallographic texture in surface severe plastic deformation processes
AU - Wang, Zhiyu
AU - Saldana, Christopher
AU - Basu, Saurabh
N1 - Publisher Copyright:
© Copyright 2017 ASME.
PY - 2017
Y1 - 2017
N2 - Severe plastic burnishing was investigated as a promising surface severe plastic deformation technique for generating gradient microstructure surfaces. The deformed state of oxygen free high conductivity copper workpieces during the surface deformation process was determined with high-speed imaging, this complemented by microstructure characterization using orientation image microscopy based on electron backscatter diffraction. Varying deformation levels in terms of both magnitude and gradient on the processed surface were achieved through control of the incident tool angle. Refined microstructures, including laminate grains elongated in the velocity direction and equiaxed submicron grains were observed in the subsurface and were found to be controlled by the combined effects of strain and strain rate in the surface deformation process. Additionally, crystallographic texture evolutions were characterized, showing typical shear textures predominately along the 〈110〉 partial fiber. The rotation of texture from original ideal orientation positions was related directly to the deformation history produced by sliding process. Based on these observations, a controllable framework for producing the processed surface with expected mechanical and microstructural responses is suggested.
AB - Severe plastic burnishing was investigated as a promising surface severe plastic deformation technique for generating gradient microstructure surfaces. The deformed state of oxygen free high conductivity copper workpieces during the surface deformation process was determined with high-speed imaging, this complemented by microstructure characterization using orientation image microscopy based on electron backscatter diffraction. Varying deformation levels in terms of both magnitude and gradient on the processed surface were achieved through control of the incident tool angle. Refined microstructures, including laminate grains elongated in the velocity direction and equiaxed submicron grains were observed in the subsurface and were found to be controlled by the combined effects of strain and strain rate in the surface deformation process. Additionally, crystallographic texture evolutions were characterized, showing typical shear textures predominately along the 〈110〉 partial fiber. The rotation of texture from original ideal orientation positions was related directly to the deformation history produced by sliding process. Based on these observations, a controllable framework for producing the processed surface with expected mechanical and microstructural responses is suggested.
UR - http://www.scopus.com/inward/record.url?scp=85027715999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027715999&partnerID=8YFLogxK
U2 - 10.1115/MSEC2017-2915
DO - 10.1115/MSEC2017-2915
M3 - Conference contribution
AN - SCOPUS:85027715999
T3 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
BT - Additive Manufacturing; Materials
PB - American Society of Mechanical Engineers
T2 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
Y2 - 4 June 2017 through 8 June 2017
ER -