Sudden narrow temperature-inversion-layer formation in ALOHA-93 as a critical-layer-interaction phenomenon

T. Y. Huang, H. Hur, T. F. Tuan, X. Li, E. M. Dewan, R. H. Picard

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

A sudden and dramatic mesospheric heating event was observed over Haleakala, Maui, on October 21, 1993 (day 294), during the ALOHA-93 Campaign. It consisted of a persistent, narrow temperature-inversion layer about 3-4 km wide near 87 km altitude with a peak temperature rise approaching 40 k, lasting for about 3.5 hours. Owing to the large number of ground-based instruments recording the event, it is possible to attempt to seek out a physical explanation for this temperature rise. There is powerful evidence to suggest that the temperature-inversion layer is associated with energy deposition, direct and indirect, resulting from gravity wave/critical layer interaction. Indeed, lidar wind profiles and mesospheric wave structures simultaneously observed with CCD imagers reveal the presence of a critical layer at the appropriate altitude. The data also show a narrow unstable background wind profile over a 2-3 km thickness in the immediate vicinity of the critical layer. We will show quantitatively that there is sufficient energy available from the dissipation of the observed gravity wave and from the observed instability in the background winds to account for the heating. After the critical layer has disappeared, the temperature rise subsides, and the background wind again becomes stable at all height levels of interest.

Original languageEnglish (US)
Pages (from-to)6323-6332
Number of pages10
JournalJournal of Geophysical Research Atmospheres
Volume103
Issue numberD6
DOIs
StatePublished - Mar 27 1998

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Oceanography
  • Forestry
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Palaeontology

Fingerprint

Dive into the research topics of 'Sudden narrow temperature-inversion-layer formation in ALOHA-93 as a critical-layer-interaction phenomenon'. Together they form a unique fingerprint.

Cite this