SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase

Boris Pfander, George Lucian Moldovan, Meik Sacher, Carsten Hoege, Stefan Jentsch

Research output: Contribution to journalArticlepeer-review

511 Scopus citations

Abstract

Damaged DNA, if not repaired before replication, can lead to replication fork stalling and genomic instability; however, cells can switch to different damage bypass modes that permit replication across lesions. Two main bypasses are controlled by ubiquitin modification of proliferating cell nuclear antigen (PCNA), a homotrimeric DNA-encircling protein that functions as a polymerase processivity factor and regulator of replication-linked functions. Upon DNA damage, PCNA is modified at the conserved lysine residue 164 by either mono-ubiquitin or a lysine-63-linked multi-ubiquitin chain, which induce error-prone or error-free replication bypasses of the lesions. In S phase, even in the absence of exogenous DNA damage, yeast PCNA can be alternatively modified by the small ubiquitin-related modifier protein SUMO; however the consequences of this remain controversial. Here we show by genetic analysis that SUMO-modified PCNA functionally cooperates with Srs2, a helicase that blocks recombinational repair by disrupting Rad51 nucleoprotein filaments. Moreover, Srs2 displays a preference for interacting directly with the SUMO-modified form of PCNA, owing to a specific binding site in its carboxy-terminal tail. Our finding suggests a model in which SUMO-modified PCNA recruits Srs2 in S phase in order to prevent unwanted recombination events of replicating chromosomes.

Original languageEnglish (US)
Pages (from-to)428-433
Number of pages6
JournalNature
Volume436
Issue number7049
DOIs
StatePublished - Jul 21 2005

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase'. Together they form a unique fingerprint.

Cite this