Super-Resolution Optical Lithography with DNA

Shi Ho Kim, Yu Liu, Conner Hoelzel, Xin Zhang, Tae Hee Lee

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


We developed an efficient, versatile, and accessible super-resolution microscopy method to construct a nanoparticle assembly at a spatial resolution below the optical diffraction limit. The method utilizes DNA and a photoactivated DNA cross-linker. Super-resolution optical techniques have been used only as a means to make measurements below the light diffraction limit. Furthermore, no optical technique is currently available to construct nanoparticle assemblies with a precisely designed shape and internal structure at a resolution of a few tens of nanometers (nm). Here we demonstrate that we can fulfill this deficiency by utilizing spontaneous structural dynamics of DNA hairpins combined with single-molecule fluorescence resonance energy transfer (smFRET) microscopy and a photoactivated DNA cross-linker. The stochastic fluorescence blinking due to the spontaneous folding and unfolding motions of DNA hairpins enables us to precisely localize a folded hairpin and solidify it only when it is within a predesigned target area whose size is below the diffraction limit. As the method is based on an optical microscope and an easily clickable DNA cross-linking reagent, it will provide an efficient means to create large nanoparticle assemblies with a shape and internal structure at an optical super-resolution, opening a wide window of opportunities toward investigating their photophysical and optoelectronic properties and developing novel devices.

Original languageEnglish (US)
Pages (from-to)6035-6042
Number of pages8
JournalNano letters
Issue number9
StatePublished - Sep 11 2019

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering


Dive into the research topics of 'Super-Resolution Optical Lithography with DNA'. Together they form a unique fingerprint.

Cite this