Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras

Marcelo Aguiar, Carlos André, Carolina Benedetti, Nantel Bergeron, Zhi Chen, Persi Diaconis, Anders Hendrickson, Samuel Hsiao, I. Martin Isaacs, Andrea Jedwab, Kenneth Johnson, Gizem Karaali, Aaron Lauve, Tung Le, Stephen Lewis, Huilan Li, Kay Magaard, Eric Marberg, Jean Christophe Novelli, Amy PangFranco Saliola, Lenny Tevlin, Jean Yves Thibon, Nathaniel Thiem, Vidya Venkateswaran, C. Ryan Vinroot, Ning Yan, Mike Zabrocki

Research output: Contribution to journalArticlepeer-review

55 Citations (SciVal)


We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.

Original languageEnglish (US)
Pages (from-to)2310-2337
Number of pages28
JournalAdvances in Mathematics
Issue number4
StatePublished - Mar 1 2012

All Science Journal Classification (ASJC) codes

  • General Mathematics


Dive into the research topics of 'Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras'. Together they form a unique fingerprint.

Cite this