Supersonic jet noise reductions predicted with increased jet spreading rate

Milo D. Dahl, Philip John Morris

Research output: Contribution to conferencePaperpeer-review

Abstract

In this paper, predictions are made of noise radiation from single, supersonic, axisymmetric jets. We examine the effects of changes in operating conditions and the effects of simulated enhanced mixing that would increase the spreading rate of the jet shear layer on radiated noise levels. The radiated noise in the downstream direction is dominated by mixing noise and it is well described by the instability wave noise radiation analysis. A numerical prediction scheme is used for the mean flow providing an efficient method to obtain the mean flow development for various operating conditions and to simulate the enhanced mixing. Using far field radiated noise measurements as a reference, the calculations predict that enhanced jet spreading results in a reduction of radiated noise.

Original languageEnglish (US)
Pages29-34
Number of pages6
StatePublished - Dec 1 1995
EventProceedings of the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition - Hilton Head, SC, USA
Duration: Aug 13 1995Aug 18 1995

Other

OtherProceedings of the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition
CityHilton Head, SC, USA
Period8/13/958/18/95

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Supersonic jet noise reductions predicted with increased jet spreading rate'. Together they form a unique fingerprint.

Cite this