## Abstract

We investigate theoretically the suppression of two-body losses when the on-site loss rate is larger than all other energy scales in a lattice. This work quantitatively explains the recently observed suppression of chemical reactions between two rotational states of fermionic KRb molecules confined in one-dimensional tubes with a weak lattice along the tubes [Yan et al., Nature (London) 501, 521 (2013)]. New loss rate measurements performed for different lattice parameters but under controlled initial conditions allow us to show that the loss suppression is a consequence of the combined effects of lattice confinement and the continuous quantum Zeno effect. A key finding, relevant for generic strongly reactive systems, is that while a single-band theory can qualitatively describe the data, a quantitative analysis must include multiband effects. Accounting for these effects reduces the inferred molecule filling fraction by a factor of 5. A rate equation can describe much of the data, but to properly reproduce the loss dynamics with a fixed filling fraction for all lattice parameters we develop a mean-field model and benchmark it with numerically exact time-dependent density matrix renormalization group calculations.

Original language | English (US) |
---|---|

Article number | 070404 |

Journal | Physical review letters |

Volume | 112 |

Issue number | 7 |

DOIs | |

State | Published - Feb 20 2014 |

## All Science Journal Classification (ASJC) codes

- General Physics and Astronomy