Surface modification of proppant using hydrophobic coating to enhance long-term production

Maryam Tabatabaei, Arash Dahi Taleghani, Yuzhe Cai, Livio Santos, Nasim Alem

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Proppant bed can play a critical role in enhancing oil and gas production in stimulated wells. In the last 2 decades, there have been consistent efforts to improve shape characteristics and mechanical strength properties to guarantee high permeability in the resultant propped fracture. However, engineering the surface properties of proppants, such as tuning their wettability, has not received considerable attention. Considering that water-wet proppants can not only limit production because of reduced hydrocarbon relative permeability but also facilitate fines migration through the proppant bed, a methodology is presented here to alter the wettability of proppants using graphite nanoplatelets (GNPs). The idea benefits from the intrinsic hydrophobicity of graphitic surfaces, their relatively low cost, and their planar geometry for coating proppants. Conductivity tests are conducted according to ISO 13503-5:2006 (2006) and API RP 19D (2008) to examine how the coating process changes the relative permeability to water and oil. According to the simulation results, the newly developed graphite-coated proppants speed up the water cleanup and increase long-term oil production in an oil-wet reservoir.

Original languageEnglish (US)
Pages (from-to)116-127
Number of pages12
JournalSPE Production and Operations
Volume36
Issue number1
DOIs
StatePublished - Feb 2021

All Science Journal Classification (ASJC) codes

  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Surface modification of proppant using hydrophobic coating to enhance long-term production'. Together they form a unique fingerprint.

Cite this