Surface phases of Cu2O(111) under CO2 electrochemical reduction conditions

Xiaowa Nie, Gregory L. Griffin, Michael J. Janik, Aravind Asthagiri

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


Density functional theory (DFT) calculations were performed to examine the relative stability of Cu- and O-terminated Cu2O(111) surfaces as well as possible surface phases of Cu2O(111) under applied potentials relevant for carbon dioxide (CO2) electrochemical reduction. The Cu-terminated surface is found to be more favored than the O-terminated surface at potentials less than - 0.52 V-SHE at a pH = 7. Adsorption stabilities of H*, OH*, O*, and H2O* were examined by calculating the formation free energy of the adsorbate as a function of electrode potential. A H* covered surface is the most favored surface under reduction conditions. At pH values of 7 and 13, formation of an O-vacancy requires potentials of 0.61 and 0.25 V-SHE, respectively. At more negative potentials relevant to reduction of CO2, formation of an O-vacancy is thermodynamically favored, indicating a facile reduction of the Cu2O surface as observed experimentally.

Original languageEnglish (US)
Pages (from-to)88-91
Number of pages4
JournalCatalysis Communications
StatePublished - Jul 5 2014

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Process Chemistry and Technology


Dive into the research topics of 'Surface phases of Cu2O(111) under CO2 electrochemical reduction conditions'. Together they form a unique fingerprint.

Cite this