TY - JOUR
T1 - Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model
AU - Manning, Cionne N.
AU - Kim, H. Mike
AU - Sakiyama-Elbert, Shelly
AU - Galatz, Leesa M.
AU - Havlioglu, Necat
AU - Thomopoulos, Stavros
PY - 2011/7
Y1 - 2011/7
N2 - Despite advances in surgical technique, rotator cuff repairs are plagued by a high rate of failure. This failure rate is in part due to poor tendon-to-bone healing; rather than regeneration of a fibrocartilaginous attachment, the repair is filled with disorganized fibrovascular (scar) tissue. Transforming growth factor beta 3 (TGF-β3) has been implicated in fetal development and scarless fetal healing and, thus, exogenous addition of TGF-β3 may enhance tendon-to-bone healing. We hypothesized that: TGF-β3 could be released in a controlled manner using a heparin/fibrin-based delivery system (HBDS); and delivery of TGF-β3 at the healing tendon-to-bone insertion would lead to improvements in biomechanical properties compared to untreated controls. After demonstrating that the release kinetics of TGF-β3 could be controlled using a HBDS in vitro, matrices were incorporated at the repaired supraspinatus tendon-to-bone insertions of rats. Animals were sacrificed at 14-56 days. Repaired insertions were assessed using histology (for inflammation, vascularity, and cell proliferation) and biomechanics (for structural and mechanical properties). TGF-β3 treatment in vivo accelerated the healing process, with increases in inflammation, cellularity, vascularity, and cell proliferation at the early timepoints. Moreover, sustained delivery of TGF-β3 to the healing tendon-to-bone insertion led to significant improvements in structural properties at 28 days and in material properties at 56 days compared to controls. We concluded that TGF-β3 delivered at a sustained rate using a HBDS enhanced tendon-to-bone healing in a rat model.
AB - Despite advances in surgical technique, rotator cuff repairs are plagued by a high rate of failure. This failure rate is in part due to poor tendon-to-bone healing; rather than regeneration of a fibrocartilaginous attachment, the repair is filled with disorganized fibrovascular (scar) tissue. Transforming growth factor beta 3 (TGF-β3) has been implicated in fetal development and scarless fetal healing and, thus, exogenous addition of TGF-β3 may enhance tendon-to-bone healing. We hypothesized that: TGF-β3 could be released in a controlled manner using a heparin/fibrin-based delivery system (HBDS); and delivery of TGF-β3 at the healing tendon-to-bone insertion would lead to improvements in biomechanical properties compared to untreated controls. After demonstrating that the release kinetics of TGF-β3 could be controlled using a HBDS in vitro, matrices were incorporated at the repaired supraspinatus tendon-to-bone insertions of rats. Animals were sacrificed at 14-56 days. Repaired insertions were assessed using histology (for inflammation, vascularity, and cell proliferation) and biomechanics (for structural and mechanical properties). TGF-β3 treatment in vivo accelerated the healing process, with increases in inflammation, cellularity, vascularity, and cell proliferation at the early timepoints. Moreover, sustained delivery of TGF-β3 to the healing tendon-to-bone insertion led to significant improvements in structural properties at 28 days and in material properties at 56 days compared to controls. We concluded that TGF-β3 delivered at a sustained rate using a HBDS enhanced tendon-to-bone healing in a rat model.
UR - http://www.scopus.com/inward/record.url?scp=79955887598&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955887598&partnerID=8YFLogxK
U2 - 10.1002/jor.21301
DO - 10.1002/jor.21301
M3 - Article
C2 - 21246611
AN - SCOPUS:79955887598
SN - 0736-0266
VL - 29
SP - 1099
EP - 1105
JO - Journal of Orthopaedic Research
JF - Journal of Orthopaedic Research
IS - 7
ER -