Sustained-load and fatigue performance of a hybrid FRP-concrete bridge deck system

Gordon P. Warn, Amjad J. Aref

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The design and construction of bridge systems with long-term durability and low maintenance requirements is a significant challenge for bridge engineers. One possible solution to this challenge could be through the use of new materials, e.g., fiber-reinforced polymer (FRP) composites, with traditional materials that are arranged as an innovative hybrid structural system where the FRP serves as a load-carrying constituent and a protective cover for the concrete. This paper presents the results of an experimental investigation designed to evaluate the performance of a 3/4 scale hybrid FRP-concrete (HFRPC) bridge deck and composite connection under sustained and repeated (fatigue) loading. In addition, following the sustained-load and fatigue portions of the experimental study, destructive testing was performed to determine the first strength-based limit state of the hybrid deck. Results from the sustained-load and fatigue testing suggest that the HFRPC deck system might be a viable alternative to traditional cast-in-place reinforced concrete decks showing no global creep behavior and no degradation in stiffness or composite action between the deck and steel girders after 2 million cycles of dynamic loading with a peak load of 1.26 times the scaled tandem load (TL). Furthermore, the ultimate strength test showed that the deck failed prior to the global superstructure at a load approximately six times the scaled TL.

Original languageEnglish (US)
Pages (from-to)856-864
Number of pages9
JournalJournal of Composites for Construction
Volume14
Issue number6
DOIs
StatePublished - Nov 2010

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Civil and Structural Engineering
  • Building and Construction
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Sustained-load and fatigue performance of a hybrid FRP-concrete bridge deck system'. Together they form a unique fingerprint.

Cite this