TY - GEN
T1 - Switched stiffness vibration controllers for fluidic flexible matrix composites
AU - Lotfi-Gaskarimahalle, Amir
AU - Rahn, Christopher D.
PY - 2010
Y1 - 2010
N2 - This paper investigates semi-active vibration control using Fluidic Flexible Matrix Composites (F2MC) as variable stiffness components of flexible structures. The stiffness of F2MC tubes can be dynamically switched from soft to stiff by opening and closing an on/off valve. Fiber reinforcement of the F2MC tube changes the internal volume when externally loaded. With an open valve, the fluid in the tube is free to move in or out of the tube, so the stiffness is low. When the valve is closed, the high bulk modulus fluid resists volume change and produces high stiffness. The equations of motion of an F2MC-mass system is derived using a 3D elasticity model and the energy method. The stability of the unforced dynamic system is proven using a Lyapunov approach. To capture the important system parameters, nondimensional full order and reduced order models are developed. A Zero Vibration (ZV) state switch technique is introduced that suppresses vibration in finite time, and is compared to conventional Skyhook semi- active control. The ITAE performance of the controllers is optimized by adjusting the open valve flow coefficient. Simulation results show that the optimal ZV controller outperforms the optimal Skyhook controller by 13% and 60% for impulse and step response, respectively.
AB - This paper investigates semi-active vibration control using Fluidic Flexible Matrix Composites (F2MC) as variable stiffness components of flexible structures. The stiffness of F2MC tubes can be dynamically switched from soft to stiff by opening and closing an on/off valve. Fiber reinforcement of the F2MC tube changes the internal volume when externally loaded. With an open valve, the fluid in the tube is free to move in or out of the tube, so the stiffness is low. When the valve is closed, the high bulk modulus fluid resists volume change and produces high stiffness. The equations of motion of an F2MC-mass system is derived using a 3D elasticity model and the energy method. The stability of the unforced dynamic system is proven using a Lyapunov approach. To capture the important system parameters, nondimensional full order and reduced order models are developed. A Zero Vibration (ZV) state switch technique is introduced that suppresses vibration in finite time, and is compared to conventional Skyhook semi- active control. The ITAE performance of the controllers is optimized by adjusting the open valve flow coefficient. Simulation results show that the optimal ZV controller outperforms the optimal Skyhook controller by 13% and 60% for impulse and step response, respectively.
UR - http://www.scopus.com/inward/record.url?scp=77953753385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953753385&partnerID=8YFLogxK
U2 - 10.1115/DETC2009-87591
DO - 10.1115/DETC2009-87591
M3 - Conference contribution
AN - SCOPUS:77953753385
SN - 9780791848982
T3 - Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009
SP - 1463
EP - 1470
BT - Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009
T2 - 2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009
Y2 - 30 August 2009 through 2 September 2009
ER -